
Transmitting, Fast and Slow: Scheduling Satellite
Traffic through Space and Time

Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

University of Illinois Urbana-Champaign

ABSTRACT
Earth observation Low Earth Orbit (LEO) satellites collect

enormous amounts of data that needs to be transferred first

to ground stations and then to the cloud, for storage and pro-

cessing. Satellites today transmit data greedily to ground sta-

tions, with full utilization of bandwidth during each contact

period.We show that due to the layout of ground stations and

orbital characteristics, this approach overloads some ground

stations and underloads others, leading to lost throughput

and large end-to-end latency for images. We present a new

end-to-end scheduler system called Umbra, which plans

transfers from large satellite constellations through ground

stations to the cloud, by accounting for both spatial and tem-
poral factors, i.e., orbital dynamics, bandwidth constraints,

and queue sizes. At the heart of Umbra is a new class of

scheduling algorithms called withhold scheduling, wherein
the sender (i.e., satellite) selectively under-utilizes some links

to ground stations. We show that Umbra’s counter-intuitive

approach increases throughput by 13-31% & reduces P90

latency by 3-6 ×.

CCS CONCEPTS
• Networks→Mobile networks; Packet scheduling.

KEYWORDS
Satellite Networks,Satellite Data Scheduling,Earth Observa-

tion Satellites

ACM Reference Format:
Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht. 2023.

Transmitting, Fast and Slow: Scheduling Satellite Traffic through

Space and Time . In The 29th Annual International Conference on
Mobile Computing and Networking (ACM MobiCom ’23), October

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00

https://doi.org/10.1145/3570361.3592521

Figure 1: LEO Satellite Constellations. Earth observation
satellites operate in polar low Earth orbits (around 1.5 hours
per orbit). As the Earth rotates under them, they scan different
parts of the Earth in every orbit. (Right) A LEO satellite motion
(Planet Dove [37]) over 3 hours (blue to red) waiting to come
in contact with the ground station (green) to transfer data.

2–6, 2023, Madrid, Spain. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3570361.3592521

1 INTRODUCTION
The current generation of Low Earth Orbit (LEO) satellite

constellations is a unique new class of mobile networking

systems characterized by scale and spatio-temporal dynam-

ics. Advancements in technology over the last decade have

led to a five-fold increase in the number of LEO satellites

in orbit [42]. Many companies [1, 14] launched constella-

tions containing hundreds of satellites to perform frequent

high-resolution monitoring of Earth. These satellites rotate

around the Earth in low orbits (< 1000 km above Earth) and

track planet-scale events. Just during 2021-22, LEO constel-

lations were used to monitor the war in Ukraine [48], the

Tonga volcanic eruption [18], and California forest fires [8].

Each satellite generates approximately one Terabyte of

data per day. A satellite communicates this massive data to

the cloud (for analysis and distribution of Earth imagery) via

multiple (fixed) ground stations located thousands of Kilome-

ters away on Earth. This data transfer problem is challenging

due to the scale of the imagery and the temporal and spa-

tial challenges, which arise from natural orbital dynamics

of LEO satellites (see Fig. 1), and uneven layout of ground

stations. The contact between a satellite and a ground station

is short-lived: four to six ten-minute windows per day per

satellite-ground station pair. In order to reduce interference

346

https://doi.org/10.1145/3570361.3592521
https://doi.org/10.1145/3570361.3592521
https://doi.org/10.1145/3570361.3592521
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570361.3592521&domain=pdf&date_stamp=2023-10-02

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

from ambient signals and blockages and to increase the num-

ber of satellite-ground station contacts , ground stations are

typically located in remote regions, e.g., closer to the poles,

and away from large populations. This limits the backhaul

bandwidth from the ground station to the cloud. Due to these

factors getting data from satellites to the cloud suffers from

day-level delays.

This paper makes the following contributions:

• We discover a new phenomenon that we call Uneven
Queuing Effect or UQE (pronounced “You-k”), wherein the
prevalent strategy of greedy full-utilization data transfer

from satellites to ground stations, is creating load imbal-

ance across ground stations and leading to sub-optimal

end-to-end throughput and latency, all due to temporal

and spatial reasons.

• We propose withhold scheduling, a new class of satellite-

ground station transfer algorithms, for LEO constella-

tions.

• We build the Umbra data transfer system, where we de-

sign, implement, and evaluate a newwithhold scheduling

algorithm based on time-expanded networks.
• We perform a large scale trace-driven simulation using

data collected from a real 153-satellite constellation.

1.1 Uneven Queuing Effect (UQE)
Due to orbital dynamics, a satellite moves past a ground

station receiver in less than ten minutes. Therefore, the con-

ventional wisdom in satellite networks has been to transmit

data greedily (or “fast”), i.e., send as much data as possible to

a ground station during its contact, using the full available

bandwidth. Naturally, a bulk of past work focuses on improv-

ing the radio design at the satellite and the ground stations

so that they can maximize the amount of data transfer during

the short contacts [12, 13, 41]. This line of work has made

great progress, and today, even small cubesats in low earth

orbits can achieve Gbps links to Earth [13].

With these advances in satellite-ground links, the sta-

tus quo “fast” transmission style for data from satellites to

ground stations leads to long outgoing queues (to the cloud)

at some ground stations, and relatively shorter queues and

thus idling, at other ground stations. This arises from two rea-

sons. First, ground stations have an uneven (heterogeneous)

spatial distribution, due to logistical reasons involving spec-

trum licensing, country-wise regulations, proximity to poles,

etc. This means that the amount of new data that a satel-

lite has in between its consecutive ground station contacts

may vary widely, and lead to unbalanced queues at ground

stations.

We term this new phenomenon we discovered as the Un-
even Queuing Effect or UQE1. Fig. 2a shows an example of

UQE. The shown satellite passes over consecutive ground

stations A, B, and C. However the A-B distance is longer than

the B-C distance. This means the satellite collects far more

data during its A-B segment than its B-C segment. Greedy

transfer means B would receive 9 GB from the satellite, while

C would receive only 1 GB. Thus, UQE leads to unbalanced

queues at B vs. C.

The UQE problem is further exacerbated because different

ground stations can have different backhaul bandwidths to

the cloud, from 100s of Mbps to a few Gbps. This means

that outgoing queue lengths at ground stations can wildly

vary across time and space. Therefore, images stuck at high

queue, low bandwidth stations experience large delays. This

situation is worsening as more compute resources are be-

ing added to ground stations for “edge”-style processing,

which further exaggerates the problem of load imbalance

due to both network delays and computational delays, both

of which could be imbalanced. Therefore, even if backhaul

bandwidths increase in the future, UQE will continue to back

up queues.

Fig. 3 shows UQE causes idling at some ground stations

and uneven egress throughput at the cloud in the greedy

approach (“Baseline”), while our system (“Umbra”, described

soon) offers stable throughput. Section 3.3 formally proves

that UQE causes quadratic growth in Greedy’s queues.

1.2 Withhold Scheduling
To counter UQE, we define a new scheduling paradigm for

satellite data transfers called withhold scheduling. The key
idea in withhold scheduling is to allow a satellite to selec-

tively under-utilize a subset of its ground station contacts and
intelligently withhold data for subsequent links if it identifies

an opportunity for a better end-to-end latency in the future.

Withhold scheduling aims to equalize queue sizes across

ground stations and leads to higher throughput and lower

latency for the transfer of satellite data to the cloud. Return-

ing to Fig. 2a, if the satellite were to intelligently withhold 4

GB of data from B, this would equalize data transferred to B

and C. If on the other hand, C had a 1.5 × higher backhaul

bandwidth (i.e., to the cloud) than B, transferring 4 GB to B

and 6 GB to C would be preferable.

Withhold scheduling needs to tell each satellite: When
to withhold, and How much to withhold. This is complex

because any decision to withhold data needs to account

for both spatial factors and temporal factors. Spatial factors
include the relative positions of satellites and ground stations.

1
The UQE effect is analogous to the Waiting Time Paradox in networks and

public transport [2]. For instance, with uneven bus arrivals, the average

waiting time is greater than 50% of the average interarrival gap.

347

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

9 GB data
downlinked from

sat to GS B
1 GB data

downlinked from
sat to GS C

GS A

GS B

GS C

time = t

time = t + 4 min

time = t + 4.5 min

(a)

++
−−

Leaflet | Data by © OpenStreetMap, under ODbL.

(b)

Figure 2: LEO Satellite Orbits and Load Imbalance. (a) Uneven Spatial layout of ground stations leads to different “new”
data sizes abvailable at a satellite during the next ground station contact. (b) Umbra needs to reason about such factors for a large
number of satellites moving around the Earth. The figure shows a snapshot of 70 Planet Dove [37] satellites with motion traces for
10 of them over a 10 minute window.

0 25 50 75 100
Time in Hours

0

5

10

T
hr

ou
gh

pu
t

in
G

bp
s

Method

Baseline

Umbra

Figure 3: Cloud Ingress Timeline: Greedy (Baseline) vs. Umbra.

Temporal factors for withhold scheduling include: (a) the

evolution of this link quality and visibility over time due

to the orbital motion of the satellite, and (b) the queue size

variation at ground stations. Furthermore, any decision made

by a satellite (say, X) to withhold data in a time slot has

multiple downstream effects: (i) a different satellite (say, Y)
may choose to use this slot to transfer data to the same
ground station, (ii) satellite X now needs a slot in the future

at a different ground station (and with increased urgency).

Withhold Scheduling via Time Expanded Networks:
We formulate the spatial and temporal factors uniquely us-

ing a time expanded network (or TEN). This allows us to

capture spatial factors, like connections between satellites,

ground stations and cloud, via a graph representation at each

instance of time. Further, we also add holdover edges from
a vertex to itself in the future, signifying the possibility of

the vertex (satellite) withholding outgoing data in spite of

available bandwidth. Any withhold scheduling algorithm or

heuristic can be captured via this TEN.

Given this TEN network, we design a polynomial-time

algorithm that combines bipartite matching, max flow, and

binary search.We also compare our approach against simpler

heuristics. Time expanded networks have been used to plan

flows in the internet [16, 17], and in sneakernets [7]. Our

work is the first to adapt them for satellite data transfers.

We build Umbra, a new system for scheduling data trans-

fers from satellite constellations to the cloud via ground

stations. Umbra accounts for the dynamics of satellite mo-

tion, back-end bandwidth constraints of ground stations, and

queue sizes at ground stations. We implement the Umbra

scheduler, and our trace-driven evaluation uses 6 million

images captured by the Planet Dove constellation [37] com-

prising 153 satellites’ trajectories and collected across 15

days. This data is the real set of images collected by the con-

stellation. We simulate the orbital dynamics of the satellites

and a ground station layout by using Planet’s published and

frequently updated orbital information [25, 29]. Our paper

is, to the best of our knowledge, the largest evaluation per-

formed using data collected by a real operational satellite

constellation. Our evaluation shows that the Umbra sched-

uler can improve the satellite constellation’s throughput of

by 13-31% and 90th percentile latency by 3-6× compared to

a greedy baseline and a heuristic-based scheduler.

2 SATELLITE NETWORKING PRIMER
There are nearly 5000 satellites in orbit today, up by 5× com-

pared to a decade ago [42]. The increase has been driven by

reduced cost of designing and launching hardware for small

satellites (e.g., “shoebox-sized” cubesats). A single rocket can

348

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

launch multiple such satellites using rideshare agreements

that amortize cost.

Satellite Orbits: Emerging LEO constellations for earth

observation typically operate in polar orbits around 500 km

above the Earth. A given satellite may return to the same

location above Earth only every six to twelve days. Satel-

lite operators—e.g., Planet Inc. [14], and Spire [1])—deploy

large-scale constellations comprising hundreds of satellites

to increase imaging frequency to multiple images per day.

This is in contrast to traditional earth observation constella-

tions that have only a few satellites, e.g., 2 satellites in the

European Space Agency’s Sentinel 2 [15].

A satellite’s location with respect to Earth is reasonably

predictable using Two Line Element (TLE) orbit descriptors

published at regular intervals by multiple agencies such as

Celestrak [29]. This means that the satellite-ground station

contact time points are predictable and we use these as an

input for scheduling. Past work [44] has also demonstrated

the ability to predict the radio link quality across time.

Imaging Equipment andDataVolume: Earth observation
satellites capture images of Earth in different parts of the

frequency spectrum, e.g., RGB, Radio Waves, Infrared, etc.

The multi-spectral imagery as well as the high resolution are

responsible for high volumes of data transfer from satellite

to Earth. The Dove constellation captures 120 TB of data per

day on average, in our evaluation period.

Ground Station Design: The satellite to ground station

link is a high frequency link (e.g., X-band 8-10 GHz) with

downlink bandwidths of up to 2 Gbps and uplinks of a few

Kbps [13]. Bandwidth varies as a function of distance be-

tween satellites and ground stations during a contact period,

and across contact periods. A single ground antenna can only

talk to one satellite at a time. However, a satellite operator

may deploy multiple antennas at the ground station, with

each antenna talking to an independent satellite. We assume

that satellites cannot communicate amongst each other, i.e.,

there are no inter-satellite links (this is true for all major

LEO constellations today).

The ground station locations are selected using several

constraints such as land availability, spectrum licensing re-

quirements, lack of interference, orbital calculations, etc. The

ground stations transfer data to the cloud using a backhaul

link. The quality of the backhaul connection depends on

the location of the ground station and can vary from 100s

of Mbps to a few Gbps. This bandwidth is relatively sta-

ble across time (as opposed to the satellite-ground station

bandwidth which varies due to orbital motion). While there

is scant public information about the nature of these links,

the range of 100s of Mbps to a few Gbps is consistent with

anecdotal evidence based on both our conversations with

satellite operators and public statements by ground station

operators [38].

Data Download Process: The images collected by a satel-

lite arrive at the cloud endpoints via two stages: satellite to

ground station first, and then ground station to cloud. Each

stage incurs hour-level latencies today. For the first step, the

access to a ground station is the key bottleneck, i.e. a satellite

must wait till its orbit brings it near a ground station, before

it can transfer data. For the second step, the backhaul con-

nectivity (to the cloud) is a bottleneck, especially for ground

stations that are remote and/or get disproportionately high

amount of data from satellites.

Assumptions: In this paper, we assume that (a) satellites

cannot send data to each other directly. This is true for all

major LEO earth observation satellite constellations today;

(b) ground stations cannot send data to each other either,

which is because ground station-ground station communi-

cation would consume the same bandwidth (to the Internet)

that the ground station could use to communicate to the

cloud and (c) ground stations are not shared across multiple

applications Nevertheless, we believe our withhold schedul-

ing algorithms generalize to any topology that relaxes these

assumptions. We also discuss these relaxations at the end of

the paper.

3 WITHHOLD SCHEDULING IN UMBRA
In scheduling the transfer of satellite data to ground stations

and then to the cloud, the key decisions that a withhold

scheduling algorithm needs to make are: (a) Should a satellite

withhold any data during a given contact? and (b) (if yes)

How much data should it withhold? The decisions depend

on the following factors:

• Orbital Motion of Satellites: This defines feasibility,
quality, and duration of contact with ground stations in

the future. One important factor is the predictable orbital

motion of each satellite, i.e., the sequence and timing of

ground station contacts are known. However link quality

may vary—if it is going to be weak in the future, it may

not be optimal to withhold a large amount of data.

• Contention for Ground Station Time: Ground sta-

tions are typically fewer (10s) than the number of satel-

lites (100s). Thus multiple satellites may contend for the

same ground station. Each ground station may have mul-

tiple antennas, but only one antenna can talk to a satellite

at a time, and vice-versa, i.e., a one-to-one mapping.

• Traffic Pattern Evolution at Ground Stations: Queue
sizes evolve over time at different ground stations. For

instance, if several satellites decide to withhold data at a

given ground station, this ground station may become

idle, while subsequent ground stations build long queues.

349

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Time

(a) Time-expanded View

Source Cloud

(b) Spatial View

Figure 4: Umbra’s Time Expanded Network. Umbra
formulates the withhold scheduling problem as a time expanded
network.
3.1 Time Expanded Network Formulation
We formulate the satellite data transfer problem over space

and time, as a time expanded network [7, 16, 17], or briefly

a TEN. Because of the predictable orbits of each satellite,

any transfer strategy can be specified within a TEN. Given

snapshots of the network at different time instances, our TEN

creates holdover edges between time instances of a given

node, signifying the node’s ability to withhold data.

Fig. 4 shows an example TEN graph evolving in time as

satellites move. Each snapshot (or layer, or time) represents

a time duration during which those satellite-ground station

contacts are possible. The bipartite graph at each time is

the set of possible satellite-ground station contacts during

that time. The horizontal lines across layers are the holdover

edges. To solve the transfer problem, the key needs are thus:

i) to select from each (layer’s) bipartite graph a one to one
matching of satellites to ground stations, and ii) at each satel-

lite, to decide how much data to transmit along a downlink

vs. to itself via a holdover edge.

Formulation: Formally, denote the set of satellites as

𝑆𝐴𝑇 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}. Each satellite, 𝑠𝑖 captures imagery

over time and generates new data 𝑝𝑖 (𝑡) at time duration 𝑡 .

Time units are of fixed duration. We include an imaginary

source node with an edge of capacity 𝑝𝑖 (𝑡) from the source to

satellite, 𝑠𝑖 to denote this data capture process. The data vol-

ume from the source to a satellite varies over time because:

(a) earth imagery satellites do not always image over water

(e.g., large oceans), and (b) a satellite may use (atmospheric)

cloud detection to reject obscured imagery.

Next, the set of ground stations is 𝐺𝑆 = {𝑔1, 𝑔2, . . . , 𝑔𝑛}.
We also add a single sink vertex denoting the cloud. Each 𝑔𝑖

has a pre-configured egress bandwidth 𝑏𝑖 (𝑡), 𝑡 = 1, 2, . . . ,𝑇

to the cloud vertex. We use the predictable, pre-computed

orbit of the satellites, and the positions of the ground stations

to estimate the bandwidth of each satellite-ground station

link. We denote as 𝑏𝑠𝑖 ,𝑔𝑗 (𝑡) the bandwidth at time 𝑡 between

satellite 𝑠𝑖 and ground station𝑔 𝑗 . Thus𝑏𝑠𝑖 ,𝑔𝑗 (𝑡) is the capacity
tagged on the 𝑠𝑖 → 𝑔 𝑗 edge of the bipartite graph at time

𝑡 . We set the capacity of the holdover edges to ∞. This is

reasonable because typical satellites have storage of multiple

TBs (2 TBs in Planet’s Dove [12], sufficient to hold multiple

days of data, far exceeding inter-contact durations.

Our goal is to compute a data transmission plan, which can
be formulated as a matrix 𝐷𝑖, 𝑗 (𝑡), representing the amount

of data satellite 𝑠𝑖 downlinks to ground station 𝑔 𝑗 at time 𝑡 .

𝐷 is subject to the following constraints:

• A satellite communicates with at most one ground station

at a time: ∀𝑡, 𝑖, 𝑗1 ≠ 𝑗2, 𝐷𝑖, 𝑗1 (𝑡) = 0 ∨ 𝐷𝑖, 𝑗2 (𝑡) = 0.

• A ground station communicates with at most one satel-

lite at a time: ∀𝑡, 𝑖1 ≠ 𝑖2, 𝑗, 𝐷𝑖1, 𝑗 (𝑡) = 0 ∨ 𝐷𝑖2, 𝑗 (𝑡) = 0.

(Generalizable to multiple antennas per ground station.)

• A satellite’s transfer speed cannot exceed downlink band-

width: ∀𝑡, 𝑖, 𝑗, 𝐷𝑖, 𝑗 (𝑡) ⩽ 𝑏𝑠𝑖 ,𝑔𝑗 (𝑡).
• A satellite cannot transmit more data than it collects:

∀𝑡, 𝑖, ∑
𝑗

𝑡∑
𝜏=1

𝐷𝑖, 𝑗 (𝜏) ⩽
𝑡∑

𝜏=1

𝑝𝑖 (𝜏).

Each ground station always utilizes its full bandwidth to

upload the images to a cloud service. Therefore, the upload

amount 𝑢 𝑗 (𝑡) for ground station 𝑔 𝑗 (to the cloud) at time 𝑡 is:

𝑢 𝑗 (𝑡) = max

(∑︁
𝑖

𝑡∑︁
𝜏=1

𝐷𝑖, 𝑗 (𝜏) −
𝑡−1∑︁
𝜏=1

𝑢 𝑗 (𝜏), 𝑏 𝑗 (𝑡)
)

Optimization Objective: Mathematically, our objective is

to maximize the end-to-end throughput for the data transfer

process from the satellite to the cloud:

𝐷∗ = argmax

𝐷

∑︁
𝑖

∑︁
𝑡

𝑢𝑖 (𝑡) (1)

Example: Fig. 5a shows a simple example with one satellite

and 2 ground stations𝑋 and𝑌 .𝑋 has a lower backhaul (cloud)

bandwidth than 𝑌 . For simplicity, we expand the graph to

only 3 time steps. The weight on each edge represents its

capacity per time unit. Infinite weights on holdover (blue)

edges show infinite storage at satellite and ground stations.

Fig. 5b shows the traditional fast (greedy) approach: at

time 𝑡1, the satellite connects to ground station 𝑋 to max-

imize its downlink and sends 4 units of data. At time 𝑡2, it

maintains that connection and sends an additional 4 units of

data. However, note that this leads to queue build up at the

ground station since its bandwidth to the cloud is limited.

This causes increasing values on the temporal (holdover)

350

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

𝒀

𝒀

𝒀

Source Cloud

Satellite Ground Stations

4

4

4

4

4

4

5

1

∞

∞

∞

∞

t3

t2

t1

𝑿

𝑿

𝑿

∞

∞

5

1

6

4

1

1

1

(a) Example Network

𝒀

𝒀

𝒀
Cloud

Satellite

4

4

4

4

t3

t2

t1

𝑿

𝑿

𝑿

6

3
4

4

1

1

1

5

Source

Ground Stations

4

(b) Traditional Solution (Greedy)

𝒀

𝒀

𝒀
Cloud

Satellite

4

4

4

4

4

1

1t3

t2

t1

𝑿

𝑿

𝑿

1

2

5

3

1

1

1

1

Source

Ground Stations

4

(c) Optimal Withhold Scheduling

Figure 5: TimeExpandedNetwork (TEN) Example, with
Greedy Result, and Optimal Result. (a) Example time-
expanded network with 1 satellite and 2 ground stations, (b)
Greedy solution that transfers 7 data units, (c) Optimal (with-
holding) solution that transfers 11 data units.

edges for this ground station. Overall, this approach trans-

fers 7 units of data. 5 data units remain at X, un-transferred.

Fig. 5c shows the optimal strategy (by withholding). At

time 𝑡1, the satellite decides to withhold 1 unit of data, thus

under-utilizing its link to𝑋 . At time 𝑡2, the satellite transmits

5 units of data (4 units of new data and 1 unit of withheld data)

to 𝑌 . Crucially, the satellite picks 𝑌 because of its stronger

backhaul link, even though the satellite has a stronger link

to 𝑋 . At 𝑡3, the satellite transmits the usual 4 units. The
single unit of withholding from 𝑡1 to 𝑡2 increases the total data
transferred in 3 time units to 11 units of data (vs. 7 data units
under greedy). Only 1 data unit remains at Y, un-transferred.

The key insight is that transferring more data to ground

stations with better backhaul links may be preferable, in

spite of the delay incurred by withholding data.

3.2 Scheduling Algorithm
Our scheduling algorithm needs to make some “hard” se-

lections and some soft selections. Hard selections matches

satellites with ground stations to transmit to. This selection

is “hard” because the scheduler can only select one satellite

or another to transmit to a ground station. Withholding data

is a soft decision, i.e., a satellite can choose to withhold all or

a fraction of its data. To reduce the complexity of the solution,

we take a two-stage approach: (1) matching satellite-ground

station pairs, and (2) max flow.

3.2.1 Stage 1: Matching Satellite-Ground Station Pairs. First,
we solve the assignment between satellites and ground sta-

tions independently for each time step in the TEN graph. For

time 𝑡 , we consider the bipartite graph consisting of satellites

and ground stations. Our goal is to select a subset of edges

that maximize the sum of weights of selected edges. Each

edge (𝑠𝑖 , 𝑔 𝑗) has a weight 𝑅𝑖, 𝑗 (𝑡) = max

(
𝑏𝑠𝑖 ,𝑔𝑗 (𝑡), 𝑐𝑎𝑐ℎ𝑒𝑖 (𝑡)

)
where 𝑐𝑎𝑐ℎ𝑒𝑖 (𝑡) is the amount of data available at satellite

𝑠𝑖 at time 𝑡 . We calculate the maximum matching via the

classical Hungarian algorithm [32]. This algorithm runs in

𝑂 (𝑛3) time to generate an optimal solution, where 𝑛 is the

number of satellites (or ground stations, whichever is larger).

Thereafter, we calculate the data amount each satellite can

downlink, and the cache (holdover) size on satellites. We

update the TEN to remove links that were not picked by

this step. This yields a matching graph for each time step,

wherein each satellite is connected to at most one ground

station, and vice-versa.

3.2.2 Stage 2: Maximum Flow Across Time. Next, to make

withholding decisions, we reason across time. We do so by

formulating the optimization problem as a maximum flow

problem from source to sink in our entire TEN graph, con-

taining all satellites and ground stations, across multiple

time steps (typically a day, but could be shorter). We use the

push-relabel algorithms [20], with a complexity 𝑂 (𝑉 2

√
𝐸),

where 𝑉 is the node set and 𝐸 is the edge set.

This solution reveals holdover decisions: if the optimal

flow passes through any holdover edges, say between time 𝑡

and (𝑡 + 1) at satellite 𝑠𝑖 , this implies satellite 𝑠𝑖 chooses to

withhold that amount of data at time 𝑡 .

3.2.3 Binary Search for Optimal Latency. Our algorithm so

far is optimized for throughput. To optimize for latency with-

out affecting throughput, we use the following approach: if

the original TEN run was on time interval [0,𝑇] (i.e., was
completed in𝑇 steps), we find the smallest value of𝑇 ′(≤ 𝑇),
so that the throughput of TEN on [0,𝑇 ′] is no lower than 99%
of throughput of TEN’s solution on [0,𝑇]. This reduces la-
tency as it forces data transfers to be completed earlier by𝑇 ′

instead of𝑇 . We find𝑇 ′
by performing a binary search on the

interval [0,𝑇]. The binary search is feasible as throughput

increases monotonically with𝑇 ′
, since more flow opportuni-

ties exist at higher 𝑇 ′
values. Once 𝑇 ′

is found, we execute

the next TEN on time [𝑇 ′,𝑇 ′ +𝑇], and repeat.

351

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

S

Cn+1

Cn

C2

C1

∞

∞

N

B1

B2

Bn

∞

M
(a)

∞"𝐶𝑖

!"#

$%#

N

M
S

(b)

T

Cn

C2

C1

C0

∞

∞

N

B1

B2

Bn

∞

M
(c)

∞

"𝐶𝑖

!

"#$

N

M

T

(d)

Figure 6: Umbra’s Graph Simplification Optimization on Satellite Time Expanded Networks. (a) Disconnected Satellite:
A canonical subgraph at the satellite (𝐵𝑖s), where 𝐵1, . . . , 𝐵𝑛 has no other edges, (b) Corresponding Simplified structure (for max
flow). (c) Purely Transmitting Ground Station: A canonical structure at the ground station (𝐵𝑖s), where 𝐵1, . . . , 𝐵𝑛 have no other
edges. (d) Corresponding Simplified structure (for max flow).

3.2.4 Graph Simplification Optimization. The TEN graph

can be large. Consider Planet Inc.’s Dove constellation with

(over) 150 operational satellites and 12 ground stations. If

each time instant is a 1 minute granularity, and we calculate

max flow across 1 day, then the resultant time expanded

network has 2 Million nodes. Our max flow algorithm may

take prohibitively long.

To optimize this, we first observe that the contacts be-

tween ground stations and satellites are sparse. During a 5

day period, the number of edges between the satellites and

ground stations, in the Planet Dove dataset, are in the ball-

park of 10K. This implies that a large number of satellites in

the graph only have withholding edges and no connections

to ground stations for long durations, as depicted in Fig. 6a.

Similarly, ground stations also experience long durations

where they are only transmitting to the cloud (Fig. 6c).

We “collapse” such consecutive node sequences into one

fused node, i.e., all intermediate nodes inside a fused node

have only one in-neighbor and one out-neighbor. This re-

duces the search space for the max flow algorithm without

affecting the correctness of the calculated solution. Fig. 6

shows two canonical scenarios.

3.3 Analysis: How Bad is UQE?
UQE (Section 1.1) leads to quadratically long queueing times.

Theorem 1. The greedy (“fast”) transfer approach (Sec-
tions 1.1) causes queuing times to increase proportionally with
variance of distances between consecutive ground stations.

Proof. Consider one satellite 𝑆 and its orbit. Let 𝑁 =

number of Ground Stations (GSs) that 𝑆 passes. 𝑁 is a fixed

constant and we only vary the locations of GSs along 𝑆’s

orbit. Let 𝑥 be the random variable for the distance between

consecutive GSes encountered by 𝑆 . Let the mean of 𝑥 be 𝜇.

Rewrite 𝑥𝑖 = 𝜇 + 𝛿𝑖 . Since
∑

𝑖 𝑥𝑖
𝑁

= 𝜇, and 𝑁 is constant, we

have:

∑
𝑖 𝛿𝑖 = 0.

Now, first, the probability of a given piece of data being

picked up during the 𝑖th GS-GS segment is proportional to

distance 𝑥𝑖 . Therefore (and second), the average additional

waiting time for this piece of data at the (second) GS is pro-

portional to its average added queue length, which is
𝑥𝑖
2
.

Putting these together, the average queueing time for a

piece of data is proportional to

𝑌 =
∑︁
𝑖

𝑥2𝑖

2

=
1

2

·(
∑︁
𝑖

(𝜇 + 𝛿𝑖)2) =
1

2

·(
∑︁
𝑖

𝜇2+
∑︁
𝑖

(2·𝜇·𝛿𝑖)+
∑︁
𝑖

𝛿2𝑖).

The middle term is zero since

∑
𝑖 𝛿𝑖 = 0. So𝑌 = 1

2
· (∑𝑖 𝜇

2+∑
𝑖 𝛿

2

𝑖). The first term is a constant (given 𝑁), and the second

term is proportional to the variance of inter-GS distances.

□

4 SYSTEM DESIGN
Fig. 7 shows Umbra’s control plane architecture. Umbra’s

scheduler runs on the cloud and communicates the latest

schedule to ground stations, which then relay them to satel-

lites upon next contact. The two key components in Umbra

are: (a) Simulator, and (b) Scheduler. The former simulates

the evolution of the satellite-ground station links using Two

Line Element (TLE) orbit descriptors to both perform orbit

calculations [24] and to compute link capacities using a link

quality model [26–28]. Profilers running on ground stations

continuously relay queue sizes and cloud bandwidth data as

input to the Umbra Simulator. Umbra’s second component,

the Scheduler, interacts with the Simulator in an interactive

way. The Scheduler constructs the time expanded network

(TEN) and computes the optimal data transfer plan.

352

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

ITU Orbit
Dynamics

Simulator

Profiler

Executor

Control
Network

Umbra estimate queue
status

data
transfer

plan

control
signal

Scheduler

Figure 7: Architecture of Umbra (Control layer).

Updating the data transfer plan: Typically, the TLE orbit

descriptors are updated periodically (on the order of a day

to few days) to maintain accuracy. Therefore Umbra pulls

new orbital data and calculates a new plan every five days,

and relays it to the ground stations and satellites. We later

evaluate the effect of an outdated plan. Umbra can be forced

to generate a new schedule upon events like crashes, new

satellite deployment, ground station upgrades, etc.

Handling component failure: Satellite failure is com-

mon in large constellations. For example, solar flares re-

cently caused 40 of 49 SpaceX satellites to fail after a recent

launch [4]. Ground stations may also fail, due to power out-

age, machine reboot, extreme weather or local events. We

assume the cloud has redundancy and is always available.

Whenever a satellite fails, Umbra computes a new sched-

ule. While a new schedule is being calculated, all satellites

and ground stations continue using the old (latest) schedule.

Newly joining satellites wait to receive a new plan before

transmitting anything and store data locally.

The failure of a ground station has a greater impact, since

satellites have to route their data through the ground station.

After such a failure, while Umbra is generating a new data

transfer plan, a satellite which encounters a failed ground

station will detect the lack of acknowledgments, and merely

withhold all its planned data until it encounters the next

non-faulty ground station.

5 EXPERIMENTAL SETUP
We implemented Umbra in a simulator using about 500 lines

of Python code. We plan to release our simulator code in the

public domain. In our experiments, we inject traces derived

from Planet Inc.’s Dove constellation [37] into our simulator.

5.1 Satellite Constellation
Our satellite dataset from Planet Inc. contains orbital data

collected from 153 satellites in orbit as part of the Dove

satellite constellation [37]. These satellites orbit around the

Earth in one of two polar orbits, as shown in Fig. 8, and

collect RGB and NIR (near infrared) imagery.

Imagery: We run each of our data transmission plans on im-

agery collected from these satellites for 15 days spread across

three months (the first five days in June, July, and August

2021). We access the metadata of the imagery collected on

these satellites using the Planet Developer API
2
. Each image

is approximately 300 MB in size, and spans at least 24 km by

8 km distance on Earth depending on the satellite hardware

and the variability in its altitude. In total, we collect data for

nearly 6 million images. To the best of our knowledge, this is

the largest evaluation involving any satellite dataset. Table 1

shows a summary of these statistics.

Ground Station: We model Planet’s ground station archi-

tecture using publicly released information. Specifically, we

simulate 12 ground stations carrying a total of 48 anten-

nas [9, 12]. Fig. 8 shows the ground station locations.

Network Properties: We follow the radio architecture

reported in [13] for simulating the satellite-ground station

communication, achieving a bandwidth of up to 2 Gbps. Pub-

lic information on available bandwidth for ground station-

cloud backhaul links is scant. We have been in communica-

tion with multiple satellite operators. We use a combination

of the anecdotal information we collected via these conversa-

tions, along with public domain information [38], to derive

typical ground station-cloud bandwidths. We estimate the

backhaul bandwidth values to be generally around 1 Gbps,

but varying from 100Mbps to a few Gbps depending on the

location. In our experiments, we vary ground station-cloud

bandwidths.

5.2 Trace-driven Simulator
We evaluate Umbra in a discrete-event simulation. The sim-

ulator keeps track of both: i) internal status of the ground

station, i.e., time, image queue, upload bandwidth, etc., and

ii) satellites, i.e., time, position, captured images, etc. It sim-

ulates the system at a time granularity of 1 minute periods.

This simulator is decoupled from Umbra’s control plane in

Section 4, allowing us to explore stale plans, failures, etc.

Simulator execution is fine-grained. During each time step,

the simulator computes the bandwidth between each ground

station-satellite pair, and then simulates the scheduling algo-

rithm’s execution plan on the waiting data at each node.

Simulating Orbital Motion and Bandwidths: We use

TLEs obtained from Celestrak [29] to calculate the position,

and velocity of satellites in orbit using the PyOrbital library
3
.

The TLEs are periodically updated for accuracy—depending

on the timestamps of the image being used, we retrieve the

2
See https://developers.planet.com/quickstart/apis/

3
https://pyorbital.readthedocs.io/en/latest/

353

https://developers.planet.com/quickstart/apis/
https://pyorbital.readthedocs.io/en/latest/

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

GS 4

GS 3

GS 0
GS 1

GS 2GS 5

GS 6

GS 7

GS 8

GS 11

GS 9

GS 10

Figure 8: LEO Path &Ground Station Locations (Left) The 2 orbits with 153 satellites
for the Dove constellation. (Right) The position of 12 ground stations on Earth.

Satellites 153

Ground Stations 12

Total Images 5,993,212

Image Size (mean) 300 MB

Total Data Volume 1798 TB

Days 15

Table 1: Satellite Trace Details.

most up to date TLE information from Celestrak for our sim-

ulation. We predict satellite radio bandwidth by using the

International Telecommunication Union (ITU) model [26–

28] which takes as input satellite distance, elevation, azimuth,

and local precipitation at the ground station. Weather infor-

mation is pulled via the DarkSky weather API [10].

Hardware: We run our simulator and optimization frame-

work on a SuperMicro SYS-4028GR-TR
4
server. To bench-

mark the time taken by our scheduler, we run the scheduler

on a single core. It takes approximately 25 minutes to sched-

ule satellite traffic for a 5-day run of the entire constellation.

This time could be optimized further by leveraging paral-

lelization, especially for computing the Hungarian matching

(Section 3). However we do not explore this because we

expect plans to be infrequently updated.

5.3 Baselines vs. Umbra
We compare Umbra against three baselines:

1. Greedy: This is the status quo: fast “greedy” transfers

(Section 1) that fully utilize satellite-ground links. We use

the ground station-satellite matching using past work [44].

2. Withhold –Naive: Inspired by public documentation [13]

where satellites skip over-subscribed ground stations, we de-

signed a simple withhold scheduling strategy. In this strategy,

the satellite compares the current queue sizes at its current

ground station contact and its next (expected) ground station

contact. If the next ground station contact currently has a

smaller queue than the current ground station, the satellite

decides to withhold all of its data, and instead transmits it to

the next ground station.

3. Withhold – Smart: We also design a more complex

heuristic-based withholding approach in which a satellite

transfers an amount of data inversely proportional to its

current queue size at the ground stations. Namely, denote

𝑞1, 𝑞2 as the queue size for the current gs and the next contact

4
https://www.supermicro.com/en/products/system/4U/4028/SYS-4028GR-

TR.cfm

654321 7
Contact Time in Minutes

0.0

0.1

0.2

0.3

F
ra

ct
io

n

(a) Contact length

0 20 40 60 80 100
Contact Size in GB

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Data Volume per Contact

Figure 9: Satellite-ground station contact statistics.

gs, and denote 𝑉 as the total volume of the cached data on

satellite. Then, the satellite will transmit𝑉0 = 𝑉
𝑞2

𝑞1+𝑞2 volume

of data during the current contact.

Our key metrics are: (a) Throughput: How much data can

a scheme transmit per day? and (b) End-to-end Latency: How

long does it take for an image from the time of its capture to

get to the cloud?

6 EXPERIMENTAL EVALUATION
We present our evaluation of Umbra below.

6.1 Satellite System Characteristics
Satellite-Ground Station Link Characteristics: Fig. 9a

shows the distribution of the contact duration between satel-

lite and ground stations. The contact time varies between 1

minutes and 7 minutes, with the mode at 6 minutes. Fig 9b

plots the distribution of (maximum) data volume that can

be downloaded during each contact. This value ranges from

10.37 GB to 103.48 GB, with a median 74.98 GB. These num-

bers are consistent with Planet’s public data [13]. The large

data volume leads to queue build up at the ground station.

Does increasing satellite bandwidth help? We simulate

improved satellite radio hardware by doubling the band-

widths in our simulator for all satellite-ground station links

and simulate the data download process using the greedy

baseline. Fig. 10 shows the CDF of the latency. Counter-

intuitively, the 90th percentile latency increased by 22%when

354

https://www.supermicro.com/en/products/system/4U/4028/SYS-4028GR-TR.cfm
https://www.supermicro.com/en/products/system/4U/4028/SYS-4028GR-TR.cfm

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

0 50 100 150 200
Latency in Hours

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Bandwidth Multiplier

1.0

2.0

Figure 10: Increasing satellite bandwidth increases la-
tency. The CDF of end-to-end latency for images when the
satellite bandwidth is doubled.

satellite downlink bandwidth was doubled! This is due to the

uneven queue buildups at a subset of ground stations, and

points to the need for withhold scheduling.

6.2 End-to-end Performance
Throughput: We evaluate the throughput achieved on three

traces spanning five days each across three different months.

We plot results from only Day 2 onwards, to measure per-

formance in steady state. We perform this experiment with

different values of backhaul (ground station to cloud) band-

width (1.2 Gbps, 1.5 Gbps, 1.8 Gbps).

Table 2 shows throughput values of Umbra, and the three

baselines (Section 5.3). First, we observe that Umbra con-

sistently reaches higher throughput than the alternatives.

For the 1.2 Gbps backhaul, Umbra outperforms the greedy

baseline by 13%, naive withhold by 31%, and smart with-

hold scheduling by 13% respectively. This is because Umbra

equalizes queue sizes across different ground stations bymov-

ing traffic from over-subscribed ground stations to under-

utilized ground stations and improves net utilization (and

hence throughput). The naive withhold strategy achieves

lower performance than Umbra because the former is more

aggressive about withhold decisions (i.e., just looks at cur-

rent queues and decides to skip). On the other hand, the

smart heuristic-based withhold scheduling performs better

than the other baselines, especially as bandwidth improves.

Finally, as backhaul bandwidth improves from 1.2 Gbps to

1.8 Gbps, gains for Umbra over baselines decrease. This is

expected because the queue sizes become smaller as the

backhaul bandwidth improves.

Takeaways: We summarize two key takeaways from this

result – (a) Our proposal for witthold scheduling is essen-

tial for efficient network utilization in satellite networks.

Even a heuristic-based withhold scheduling outperforms

greedy scheduling approaches used today. (b) However, with-

hold scheduling needs to be done intelligently to maximally

realize potential gains. Therefore, Umbra’s realization of

withhold scheduling using time-expaneded networks out-

performs other baselines.

Latency: Fig. 11 shows end-to-end latency for an image

from its satellite capture to arrival at the cloud. For 1.2 Gbps

backhaul, median latency of greedy (8.8 hours) is 42% higher

than Umbra (6.2 hours). The latency of naive withholding

is much higher at 13.7 hours, while that of smart withhold-

ing strategy is 8.9 hours. Tail latency improvement is even

larger: at 1.2 Gbps backhaul, 90-th percentile latency of Um-

bra is 11.0 hours, vs. 38.7 hours (3.5 × worse) for greedy

baseline, 66.5 hours (6 × worse) for naive withholding, and

37.98 (3.5 × worse) hours for smart withholding. The gain

continues to hold at higher backhaul bandwidths. At 1.5 Gbps

backhaul, 90-th percentile latency of greedy baseline is 19.3

hours, naive withholding is 60.9 hours, smart withholding

is 20 hours , while Umbra’s is only 8.3 hours.

Tail latency is critical for latency-sensitive applications,

e.g., analyzing conflicts, natural disasters, etc. Furthermore,

service providers generally have service level objectives (SLO)

concerning P90 or even further tailed performance to give

guarantee on the worst case of their service, in which case

improving P90 is essential in increasing the efficiency of the

whole system. Umbra’s ability to avoid some data being

stuck in long queues, and Umbra’s consequent 3.5-6 × im-

provement in P90 latency, would dramatically reduce the

time to act on insights from this data.

6.3 Inside Umbra
First, we look at withholding decisions made by Umbra. We

evaluate how often Umbra withholds data and by howmuch?

For each scheduled link between a satellite and ground sta-

tion, we measure the fraction of data withheld and plot the

CDF in Fig. 12(a). The fraction ranges from 0 to 1, with 0 cor-

responding to no data being withheld. We observe a majority

of decisions are binary withholding decisions, i.e., either all

the data is withheld or none is. Backhaul bandwidth does

not significantly affect these. Nevertheless, compared to our

withhold scheduling heuristics(Section 5.3), the selection of

which links to withhold on, is more intelligent in Umbra,

causing it to have better performance.

Finally, Figs. 3 and 12(b) show queue size (sampled) at

two typical ground stations. With the greedy baseline, queue

sizes vary widely (and wildly)—while one ground station

sees ever-expanding queues, others stay idle, thus wasting

resources. Umbra’s intelligent withholding scheme balances

loads across ground stations and stabilizes queue sizes.

6.4 Heterogeneity in Ground Stations
We relax our homogeneity assumption on ground stations

and afford a subset of them higher backhaul bandwidth to

the cloud. We select a random 50% of the ground stations

355

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Trace

Throughput (TB of data)

1.2Gbps 1.5Gbps 1.8Gbps

June July August June July August June July August

Greedy 392.3

(12.35%)

393.2

(12.02%)

381.8

(10.84%)

428.1

(6.06%)

427.4

(5.92%)

414.3

(4.93%)

443.9

(2.33%)

444.1

(1.81%)

430.1

(1.06%)

Withhold

– Naive

335.6

(25.02%)

341.3

(23.63%)

327.7

(23.47%)

343.5

(24.62%)

347.5

(23.51%)

334.3

(23.29%)

351.7

(22.62%)

357.8

(20.89%)

344.9

(20.66%)

Withhold

– Smart

395.7

(11.60%)

394.8

(11.66%)

384.5

(10.21%)

436.1

(4.30%)

434.1

(4.45%)

420.8

(3.44%)

454.1

(0.09%)

455.9
(-0.80%)

435.5
(-0.18%)

Umbra 447.6
(0.00%)

446.9
(0.00%)

428.2
(0.00%)

455.7
(0.00%)

454.3
(0.00%)

435.8
(0.00%)

454.5
(0.00%)

452.3

(0.00%)

434.7

(0.00%)

Table 2: Data throughput. Each row is measured over a 3-day period in the month. Parentheses show % worse than Umbra.

0 25 50 75 100 125
Latency in Hours

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Method
Greedy
Umbra
Withhold - Naive
Withhold - Smart

(a) 1.2 Gbps Backhaul Bandwidth

0 25 50 75 100 125
Latency in Hours

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Method
Greedy
Umbra
Withhold - Naive
Withhold - Smart

(b) 1.5 Gbps Backhaul

0 25 50 75 100
Latency in Hours

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Method
Greedy
Umbra
Withhold - Naive
Withhold - Smart

(c) 1.8 Gbps Backhaul

Figure 11: End-to-end Latency. For different backhaul bandwidths (ground station to cloud).

0.00 0.25 0.50 0.75 1.00
Data Withhold Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Bandwidth

1.2Gbps

1.5Gbps

1.8Gbps

(a) Data Withhold Rate

0 20 40 60 80
Time in Hours

0

200

400

600

800

1000

D
at

a
in

Q
ue

ue
in

G
B Greedy

Umbra

0 20 40 60 80
Time in Hours

0

2000

4000

6000

8000

D
at

a
in

Q
ue

ue
in

G
B Greedy

Umbra

(b) Queue Size for 2 typical Ground Stations

Figure 12: Analyzing Umbra’s Performance.

Mean Throughput
(Std dev)

Greedy 435.99 (8.36)

Umbra 571.80 (0.10)

Table 4: Throughput (in TB) for
heterogenous backhaul.

to have a 2 Gbps backhaul bandwidth.Table. 4 shows results

over 3 independent trials. We observe that Umbra achieves

a throughput of 571.8 TB (std dev 0.10) across 5 days, with

a 31% improvement over the greedy baseline. The standard

deviation is much lower for Umbra, showing it can load

balance even across heterogeneous ground stations.

6.5 Many Distributed Ground Stations
Recent work [43, 44] has proposed distributed ground station

architectures where hundreds of tiny low-complexity ground

stations outperform the efficient multi-million ground sta-

tions deployed today. We tested Umbra in this setting, using

the same image trace data as before. We sampled 200 ground

stations from the Satnogs database [33], which is an open-

source network of amateur ground stations operated by inde-

pendent enthusiasts. This methodology is similar to [43, 44].

0.00 0.05 0.10 0.15 0.20
Noise Level

5

10

15

20

25

L
at

en
cy

in
H

ou
rs

Greedy
Umbra

(a) Bandwidth Estimation Error

0 20 40 60 80 100
Time in Hours

0

2

4

6

8

10

12

U
pl

oa
d

R
at

e
in

G
B

ps

Umbra (No Update)

Oracle

Umbra (Update)

(b) Handling Crashes

Figure 13: Robustness Analysis. In (a): points perturbed
horizontally for clarity, and error bars are 25-75 percentile.

We set their backhaul bandwidth via a Poisson distribution

with 𝜆 = 75MBps . The total backhaul capacity is 15GBps,

which is 8X the sufficient amount to fully transmit all data

356

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

Mean Throughput (Std dev)
Greedy 425.54 (5.53)

Withhold – Naive 443.94 (8.38)

Withhold – Smart 430.97 (5.56)

Umbra 445.01 (8.80)

Table 5: Throughput (in TB) for distributed ground
stations.

0 25 50 75 100 125
Latency in Hours

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Method
Greedy
Umbra
Withhold - Naive
Withhold - Smart

Figure 14: Latency cdf for distributed ground stations

generated by our satellite constellation. We sampled 3 sets of

different bandwidth configurations for the ground stations.

Table 5 summarizes throughput during Days 2-4 for all

approaches. The improvement on average throughput by

Umbra is not significant, which is expected when we provi-

sion 8X the required total bandwidth for the ground stations.

However, from Fig 14, we see that Umbra reduces the P90

latency greatly (2.5X against naive withholding heuristic,

the second-best performing algorithm) even with abundant

backhaul bandwidth. This shows that the UQE problem is

even harder to solve by just over-provisioning infrastructure,

when the EO satellite systems evolve into the new distributed

ground station scenario in the future.

6.6 Robustness to Errors & Failures
Bandwidth Estimation Errors: Umbra may receive inac-

curate bandwidth estimates due to sudden change in weather,

interference at the ground station, etc. We evaluate the ro-

bustness of Umbra’s solution. We add random noise to the

downlink bandwidth in the simulator at run time, i.e. af-
ter the scheduler has calculated the data transmission plan.

Fig. 13a shows that noise moderately degrades median and

tail latency for Umbra. A noise level of 𝑥 means each link’s ac-

tual bandwidth is chosen uniformly in the ±(100 · 𝑥)% range

from the predicted bandwidth. Concretely, increasing noise

factor from 0.05 to 0.2 degrades Umbra’s median latency by

15% and P90 latency by 8.4%. Past work has shown the ability

to accurately predict data rates within 6% error [44], so we

expect Umbra to perform well in real-world settings.

Hardware Failures: Ground stations fail occasionally due

to power or network outages. To evaluate Umbra, we com-

pare three scenarios: 1) Umbra (No Update), which never

updates the plan even after failure(s), 2) Umbra (Update),

which calculates a new plan after failure, and disseminates

it, and 3) Oracle, which is prescient about the failure and

generates a plan ahead of the failure point, and initiates the

new plan right at the failure point.

We fail 33% of ground stations instantly at 𝑡 = 60 hours.

Fig. 13b shows that right after the failure, both versions of

Umbra (Update and No Update) keep throughput as high as

the Oracle. That is, the failure does not cause a massive drop

in throughput beyond what is expected. Because one-third

of the stations fail, total throughput drops to 66% of the orig-

inal throughput. The stable throughput lasts for only about

40 hours in Umbra (No Update) and then starts to degrade

rapidly (𝑡 = 100 hours and onwards), showing that plans

become stale after less than 2 days. Umbra (Update version)

has a plan that stays stable as long as the Oracle, giving

ground station crews a longer time to repair the failure(s).

7 RELATED WORK
Satellite Networking: Our work follows recent work [5, 6,

11, 21–23, 43, 44] in the satellite networking domain, includ-

ing: edge computing on the satellites [6, 11], ground station

architectures [22, 43, 44], security of satellite networks [19],

inter-satellite links [21, 23], network benchmarking [21], etc.

For satellite-ground station traffic, past work [11, 43, 44]

treats the satellite-ground station contact as the bottleneck

and schedules traffic greedily, i.e., transfers as much data as

possible in every contact. Unlike past work, Umbra takes a

withhold scheduling approach, where all or part of the data

can be withheld for subsequent contacts between satellite

and Earth. We are also the first ones to focus on the ground

station-cloud bandwidth as an emerging bottleneck given the

rapid advances in satellite-ground station radio speeds [13].

Time Expanded Networks: Scheduling dynamic network

flows is well-studied [16, 17, 40]. Flow scheduling using time

expanded networks has been explored in the context of sched-

uling traffic in the internet [16] and sneakernets [7]. Recently,

some research has looked to formulate time expanded net-

works in the satellite context [39, 45, 47]. This work focuses

on the task of relaying traffic through a network of inter-

connected satellites and models it from an energy [39], com-

pute [45], and network perspective [47]. Our modeling of

this problem is unique because we are the first to model

the end-to-end data transfer from large scale satellite con-
stellations to the cloud as a time expanded network. This

modelling is challenging in its scale – hundreds of satellites,

tens of ground station antennas, and time varying links. In

addition, we are the first to leverage time expanded networks

for load balancing. Finally, our work reveals new insights

like how ground stations can suffer from load imbalance and

how we can frame a new withhold scheduling approach by

performing analysis on this time expanded graph.

357

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Traffic Scheduling Algorithms: There has been a large

body of work on scheduling algorithms in other contexts

such as data centers. Our observations and results in satellite

traffic are analogous to the delay scheduling work for cluster

scheduling [50]. Delay scheduling observed that instead of

scheduling jobs to the first available node on a cluster, it is

advantageous to wait for a small amount of time and find

a node that has favorable features (e.g., data locality). This

improves overall system performance. In spite of similarity,

Umbra’s setting and techniques are different— network traf-

fic instead of cluster scheduling. Furthermore, the scale of

our problem is enormous and requires network flow formu-

lations & optimizations.

Disruption Tolerant Networks (DTN): DTN is a class

of networks experiencing intermittent connections between

endpoints. There is a rich literature in routing and traffic

engineering in DTN [30], and in applications of TEN in DTN

such as running shortest path algorithm for routing [35] or

maximum flow algorithm for optimizing throughput [46].

Traffic in DTNs flow in a "Store, Carry and Forward" man-

ner [34] similar to LEO satellite systems, but Umbra is dif-

ferent from the works on DTN in terms of the scale of the

system and the objective being optimized. First, Umbra deals

with earth imaging satellites which transmit massive im-

ages rather than short messages, where the bottleneck is not

only intermittent connections but also limited networking

bandwidth in the system. Second, while previous work on

DTN mostly deals with a multi-agent network and focuses

on optimizing for one device in the network, Umbra works

in a centralized network where all the ground stations and

satellites are owned by the same entity and they can collabo-

rate to optimize for a global objective. Finally, while the DTN

works try to optimize either latency or throughput using

TENs, Umbra is, to our best knowledge, the first algorithm

that can optimize the 2 objectives simultaneously.

8 CONCLUDING DISCUSSION
Delivering data from multiple constellations: Recent
years have seen emergence of the Ground-station-as-a-service

(GSaaS) model by many commercial entities [3, 31, 36]. These

companies allow constellation operators to rent ground sta-

tion time by the minute to schedule data download. We

expect withhold scheduling to be effective in such contexts.

However, the measurement of network queue size needs to

be indirect, as the queue size at the ground station may not

be visible to satellite constellation operators. We note that

UQE will get worse if the backhaul bandwidth of ground

stations decrease, as shown in our evaluation. Therefore, we

expect Umbra to be more efficient under the GSaaS scenario.

Inter-station and inter-satellite links: Our evaluation

assumed the absence of these links because they are not

common in today’s deployments. However, both these kinds

of links can be added to our graph and our TEN-based solu-

tion (Section 3) would still generate a solution. For instance,

a satellite could route data through another satellite using

an inter-satellite link, especially when the latter satellite is

connected to a low-queue station.

What did not work? To make withholding decisions, we

experimented with iterating between: (a) identifying the

best matching between a satellite and ground station at a

given time instance, and (b) computing the max flow in the

time expanded network. In principle, this was reasonable

because if a satellite withholds data from a ground station,

a different satellite may want to use this ground station

(this decision can be made in the next iteration). However,

we noticed that the scheduling objective (e.g. throughput)

showed little improvement beyond more than one iteration,

and only increased computation cost. We believe that this

is because most Dove satellites follow each other in one of

two orbits and come in contact with the same ground station

sequences. So, withholding decisions are similar for different

satellites in proximity with a crowded ground station.

Ground Station Backhaul Bandwidths: Our work ex-

plores the ground station-cloud backhaul link as the bot-

tleneck in satellite data transfers. Over the next few years,

we expect three factors to increase the demand for back-

haul bandwidth even more: (i) satellite-ground bandwidths

continue to improve to 5 Gbps and beyond ([41, 49]), (ii)

operators will amortize the cost of site acquisition and licens-

ing by deploying more antennas at the same ground station

site, and (iii) increased computation demands at the ground

stations (for pre-processing), will cause queuing delays to-

wards the cloud to continue increasing, even if backhaul

bandwidths keep improving.

Umbra and Resource Utilization Efficiency While pro-

visioning higher backhaul bandwidth can always reduce

queues on the ground stations and reduce the latency, it will

not solve the problem of the low resources utilization. We

note that the constellation sizes continue to grow over time.

Umbra can support more satellite with the current infras-

tructure, as well as use less bandwidth to support emerging

constellations. Moreover, in the GSaaS setting, the ground

station capacity and bandwidth needs to be rented from the

provider, and increasing its efficiency has economic benefits.

Acknowledgments –We thank the reviewers and our anony-

mous shepherd for their insightful feedback. This work was

funded partially by Cisco, Microsoft, and National Science

Foundation grant CNS 1908888. We are grateful to Kiruthika

Devaraj from Planet Inc. for many insightful discussions.

This work utilizes resources offered by the HAL cluster at

UIUC, supported by NSF MRI grant #1725729.

358

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Bill Tao, Maleeha Masood, Indranil Gupta, Deepak Vasisht

REFERENCES
[1] Spire Global Inc. https://spire.com/.

[2] Waiting Time Paradox. https://en.wikipedia.org/wiki/Residual_time.

[3] Amazon Inc. AWS Ground Station . https://aws.amazon.com/ground-

station/.

[4] Robin George Andrews. Solar storm destroys 40 new SpaceX satel-

lites in orbit. New York Times. https://www.nytimes.com/2022/02/09/

science/spacex-satellites-storm.html, 2021.

[5] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi Bozkurt, Anthony

Aguirre, Balakrishnan Chandrasekaran, P. Brighten Godfrey, Gregory

Laughlin, Bruce Maggs, and Ankit Singla. Gearing up for the 21st

century space race. In ACMWorkshop on Hot Topics in Networks, ACM
HotNets, 2018.

[6] Debopam Bhattacherjee, Simon Kassing, Melissa Licciardello, and

Ankit Singla. In-orbit computing: An outlandish thought experiment?

In ACM Workshop on Hot Topics in Networks, ACM HotNets, 2020.

[7] Brian Cho and Indranil Gupta. New algorithms for planning bulk

transfer via internet and shipping networks. In International Conference
on Distributed Computing Systems. IEEE Computer Society, 2010.

[8] Christine Lunsford. California’s caldor fire seen from space in har-

rowing satellite images. https://www.space.com/caldor-fire-satellite-

images-gallery, 2021.

[9] Kyle Colton, Joseph Breu, Bryan Klofas, Sydney Marler, Chad Norgan,

and Matthew Waldram. Merging Diverse Architectures for Multi-

Mission Support. In Small Satellite Conference, 2020.
[10] Dark Sky. Dark Sky Weather API. https://darksky.net/dev.

[11] Bradley Denby and Brandon Lucia. Orbital edge computing: Nanosatel-

lite constellations as a new class of computer system. In ACM ASPLOS,
2020.

[12] Kiruthika Devaraj, Ryan Kingsbury, Matt Ligon, Joseph Breu, Vivek

Vittaldev, Bryan Klofas, Patrick Yeon, and Kyle Colton. Dove High

Speed Downlink System. In Small Satellite Conference, 2017.
[13] Kiruthika Devaraj, Matt Ligon, Eric Blossom, Joseph Breu, Bryan Klo-

fas, Kyle Colton, and Ryan Kingsbury. Planet High Speed Radio: Cross-

ing Gbps from a 3U Cubesat. In Small Satellite Conference, 2019.
[14] Anna Escher. Inside Planet Labs’ new satellite manufacturing site.

TechCrunch. https://techcrunch.com/2018/09/14/inside-planet-labs-

new-satellite-manufacturing-site/, 2018.

[15] European Space Agency. Sentinel 2: Core Ground Segment Design

. https://sentinel.esa.int/web/sentinel/missions/sentinel-2/ground-

segment/core-ground-segment.

[16] Lisa Fleischer and Martin Skutella. Quickest flows over time. SIAM
Journal on Computing, 2007.

[17] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows

from static flows. Operations Research, 1958.
[18] Jonathan Franklin. Satellite images show the aftermath of tonga

volcano’s eruption. https://www.npr.org/sections/pictureshow/2022/

01/26/1075621526/satellite-images-show-the-aftermath-of-tonga-

volcanos-eruption, 2022.

[19] Giacomo Giuliari, Tommaso Ciussani, Adrian Perrig, and Ankit Singla.

ICARUS: Attacking low earth orbit satellite networks. In USENIX
Annual Technical Conference (USENIX ATC 21), 2021.

[20] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the

maximum-flow problem. Journal of the ACM, 1988.

[21] Mark Handley. Delay is not an option: Low latency routing in space.

In ACM Workshop on Hot Topics in Networks, ACM HotNets, 2018.

[22] Mark Handley. Using ground relays for low-latency wide-area routing

in megaconstellations. In ACM Workshop on Hot Topics in Networks,
ACM HotNets, 2019.

[23] Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, and

Ankit Singla. "Internet from Space" without inter-satellite links. In

ACM Workshop on Hot Topics in Networks, ACM HotNets, 2020.

[24] Felix R. Hoots and Ronald L. Roehrich. Models for Propagation of

NORAD Element Sets. Technical report, Aerospace Defense Command,

United States Airforce, 1980.

[25] Planet Inc. Planet labs public orbital ephemerides. https://ephemerides.

planet-labs.com/.

[26] International Telecommunications Union. ITU P.838: Specific attenua-

tion model for rain for use in prediction methods. Technical report,

2019.

[27] International Telecommunications Union. ITU P.839 : Rain height

model for prediction methods . Technical report, 2019.

[28] International Telecommunications Union. ITU P.840: Attenuation due

to clouds and fog. Technical report, 2019.

[29] T. S. Kelso. Celestrak. https://celestrak.com/.

[30] Maurice J Khabbaz, Chadi M Assi, and Wissam F Fawaz. Disruption-

tolerant networking: A comprehensive survey on recent developments

and persisting challenges. IEEE Communications Surveys & Tutorials,
14(2):607–640, 2011.

[31] Kongsberg Satellite Services. Ground Station Services. https://www.

ksat.no/services/ground-station-services/.

[32] Harold W Kuhn. The hungarian method for the assignment problem.

Naval Research Logistics Quarterly, 2(1-2):83–97, 1955.
[33] Libre Space Foundation. SatNOGS: An Open Source Ground Station

and Network. https://satnogs.org/, 2014.

[34] Alex McMahon and Stephen Farrell. Delay-and disruption-tolerant

networking. IEEE Internet Computing, 13(6):82–87, 2009.
[35] Shashidhar Merugu, Mostafa Hamed Ammar, and Ellen W Zegura.

Routing in space and time in networks with predictable mobility. Tech-

nical report, Georgia Institute of Technology, 2004.

[36] Microsoft. Azure Orbital. https://azure.microsoft.com/en-us/services/

orbital/.

[37] Planet Inc. Dove Satellite Constellation. https://www.planet.com/our-

constellations/.

[38] Konsberg Satellite Services. Ksat has installed antenna number 100 at

svalbard ground station. https://www.kongsberg.com/newsandmedia/

news-archive/2021/ksat-has-installed-antenna-number-100-at-

svalbard-ground-station/.

[39] Keyi Shi, Hongyan Li, and Long Suo. Temporal graph based energy-

limited max-flow routing over satellite networks. In 2021 IFIP Network-
ing Conference (IFIP Networking), 2021.

[40] Martin Skutella. An Introduction to Network Flows over Time. Springer
Berlin Heidelberg, 2009.

[41] Mark Storm, He Cao, Slava Litvinovitch, Kent Puffenberger, Jeremy

Young, Dave Pachowicz, Timothy Deely, Shantanu Gupta, and Michael

Albert. Cubesat laser communications transceiver for multi-gbps

downlink. In Small Satellite Conference, 2017.
[42] Union of Concerned Scientists. UCS Satellite Database. https://www.

ucsusa.org/resources/satellite-database, 2020.

[43] Deepak Vasisht and Ranveer Chandra. A distributed and hybrid ground

station network for low earth orbit satellites. In ACM HotNets, 2020.
[44] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra. L2d2: Low

latency distributed downlink for low earth orbit satellites. In ACM
SIGCOMM, 2021.

[45] Chen Wang, Zhiyuan Ren, Wenchi Cheng, Shuya Zheng, and Hailin

Zhang. Time-expanded graph-based dispersed computing policy for

leo space satellite computing. In IEEE Wireless Communications and
Networking Conference (WCNC), 2021.

[46] Peng Wang, Xiushe Zhang, Shun Zhang, Hongyan Li, and Tao Zhang.

Time-expanded graph-based resource allocation over the satellite net-

works. IEEE Wireless Communications Letters, 8(2):360–363, 2018.

359

https://spire.com/
https://en.wikipedia.org/wiki/Residual_time
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/
https://www.nytimes.com/2022/02/09/science/spacex-satellites-storm.html
https://www.nytimes.com/2022/02/09/science/spacex-satellites-storm.html
https://www.space.com/caldor-fire-satellite-images-gallery
https://www.space.com/caldor-fire-satellite-images-gallery
https://darksky.net/dev
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/ground-segment/core-ground-segment
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/ground-segment/core-ground-segment
https://www.npr.org/sections/pictureshow/2022/01/26/1075621526/satellite-images-show-the-aftermath-of-tonga-volcanos-eruption
https://www.npr.org/sections/pictureshow/2022/01/26/1075621526/satellite-images-show-the-aftermath-of-tonga-volcanos-eruption
https://www.npr.org/sections/pictureshow/2022/01/26/1075621526/satellite-images-show-the-aftermath-of-tonga-volcanos-eruption
https://ephemerides.planet-labs.com/
https://ephemerides.planet-labs.com/
https://celestrak.com/
https://www.ksat.no/services/ground-station-services/
https://www.ksat.no/services/ground-station-services/
https://satnogs.org/
https://azure.microsoft.com/en-us/services/orbital/
https://azure.microsoft.com/en-us/services/orbital/
https://www.planet.com/our-constellations/
https://www.planet.com/our-constellations/
https://www.kongsberg.com/newsandmedia/news-archive/2021/ksat-has-installed-antenna-number-100-at-svalbard-ground-station/
https://www.kongsberg.com/newsandmedia/news-archive/2021/ksat-has-installed-antenna-number-100-at-svalbard-ground-station/
https://www.kongsberg.com/newsandmedia/news-archive/2021/ksat-has-installed-antenna-number-100-at-svalbard-ground-station/
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database

Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

[47] Peng Wang, Xiushe Zhang, Shun Zhang, Hongyan Li, and Tao Zhang.

Time-expanded graph-based resource allocation over the satellite net-

works. IEEE Wireless Communications Letters, 2019.
[48] Haley Willis. Newly released satellite images show the effects of

war on ukraine’s civilians. https://www.nytimes.com/live/2022/03/

03/world/russia-ukraine?smid=url-share#newly-released-satellite-

images-show-the-effects-of-war-on-ukraines-civilians, 2022.

[49] Yen Wong, Scott Schaire, Steve Bundick, Peter Fetterer, Trish Perrotto,

and Peter Celeste. NASA NEN DVB-S2 demonstration testing for

enhancing higher data rates for CubeSat/small satellite missions at

X-band and Ka-band. In Small Satellite Conference, 2020.
[50] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-

egy, Scott Shenker, and Ion Stoica. Delay scheduling: A simple tech-

nique for achieving locality and fairness in cluster scheduling. In

Proceedings of the 5th European Conference on Computer Systems, Eu-
roSys ’10, 2010.

360

https://www.nytimes.com/live/2022/03/03/world/russia-ukraine?smid=url-share#newly-released-satellite-images-show-the-effects-of-war-on-ukraines-civilians
https://www.nytimes.com/live/2022/03/03/world/russia-ukraine?smid=url-share#newly-released-satellite-images-show-the-effects-of-war-on-ukraines-civilians
https://www.nytimes.com/live/2022/03/03/world/russia-ukraine?smid=url-share#newly-released-satellite-images-show-the-effects-of-war-on-ukraines-civilians

	Abstract
	1 Introduction
	1.1 Uneven Queuing Effect (UQE)
	1.2 Withhold Scheduling

	2 Satellite Networking Primer
	3 Withhold Scheduling in Umbra
	3.1 Time Expanded Network Formulation
	3.2 Scheduling Algorithm
	3.3 Analysis: How Bad is UQE?

	4 System Design
	5 Experimental Setup
	5.1 Satellite Constellation
	5.2 Trace-driven Simulator
	5.3 Baselines vs. Umbra

	6 Experimental Evaluation
	6.1 Satellite System Characteristics
	6.2 End-to-end Performance
	6.3 Inside Umbra
	6.4 Heterogeneity in Ground Stations
	6.5 Many Distributed Ground Stations
	6.6 Robustness to Errors & Failures

	7 Related Work
	8 Concluding Discussion
	References

