
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Known Knowns and Unknowns: Near-realtime
Earth Observation Via Query Bifurcation in Serval

Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, and Deepak Vasisht,
University of Illinois Urbana-Champaign

https://www.usenix.org/conference/nsdi24/presentation/tao

Known Knowns and Unknowns: Near-realtime Earth Observation Via Query
Bifurcation in Serval

Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, Deepak Vasisht
University of Illinois Urbana-Champaign

Abstract

Earth observation satellites, in low Earth orbits, are increas-
ingly approaching near-continuous imaging of the Earth. To-
day, these satellites capture an image of every part of Earth
every few hours. However, the networking capabilities haven’t
caught up, and can introduce delays of few hours to days in
getting these images to Earth. While this delay is acceptable
for delay-tolerant applications like land cover maps, crop type
identification, etc., it is unacceptable for latency-sensitive ap-
plications like forest fire detection or disaster monitoring. We
design Serval to enable near-realtime insights from Earth im-
agery for latency-sensitive applications despite the network-
ing bottlenecks by leveraging the emerging computational
capabilities on the satellites and ground stations. The key
challenge for our work stems from the limited computational
capabilities and power resources available on a satellite. We
solve this challenge by leveraging predictability in satellite
orbits to bifurcate computation across satellites and ground
stations. We evaluate Serval using trace-driven simulations
and hardware emulations on a dataset comprising ten million
images captured using the Planet Dove constellation compris-
ing nearly 200 satellites. Serval reduces end-to-end latency
for high priority queries from 71.71 hours (incurred by state
of the art) to 2 minutes, and 90-th percentile from 149 hours
to 47 minutes.

1 Introduction

Low Earth Orbit (LEO) satellites promise to deliver continu-
ous, high-resolution imagery of the Earth through large con-
stellations of low cost cubesats. These constellations, e.g.,
Planet Dove [50], deploy imaging sensors on cubesats in low
orbits nearly 500 Kilometers above the Earth’s surface. Due
to their low orbits and large constellation size, they can cap-
ture an image of every location on Earth multiple times per
day. The imagery from these satellites is useful for many
applications such as disaster monitoring [11, 18], precision
agriculture [9, 40], disease modeling [14], climate monitor-
ing [64], and financial analytics [62].

However, Earth observation constellations today cannot
support many latency sensitive applications because they suf-
fer from large latency of few hours to days between an image
capture and its availability to the end user [59]. For example,
a fire department needs the images of a wildfire within a few
minutes so as to limit risks to human lives, forest ecosystems,

Figure 1: Serval distributes computation across satellites
and ground stations to prioritize latency-sensitive imagery
and insights.

and property. Such delays largely arise from a satellite’s data
transfer process (see Fig. 1). Satellite imagery must be trans-
ported to ground stations on Earth, and from there to the cloud,
where processing, storage, and insight generation can occur.
This pipeline can incur a delay of hours and sometimes days.
This is due to several factors: (a) orbital dynamics, as satellites
have intermittent access to ground stations on Earth—about
ten minutes per contact, with 4-5 good quality contacts per
day; and (b) the bandwidth from satellite to ground station
is limited due to the large distance from satellite to Earth,
making it nearly impossible to downlink all the images from
a satellite during every contact.

This paper’s goal is to enable near-real-time insights from
satellite imagery by reducing the time-to-insight for satellite
imagery to O(minutes). We do so by by leveraging emerging
compute capabilities on satellites and ground stations. This is
feasible today due to the ongoing push to equip satellites with
small amounts of compute resources such as a Raspberry Pi or
a NVIDIA Jetson, e.g., in 2020, the European Space Agency
(ESA) deployed a neural-network based cloud detector on
their Φ-Sat-1 mission [28]. Similarly, many recent proposals
from industry [7, 46] and academia [60, 61] argue for co-
locating ground stations and data centers to reduce terrestrial
networking delays and enable compute on ground stations.
Our core idea is to leverage the emerging general-purpose
computational capabilities available on satellites and ground
stations to prioritize latency-sensitive images such as those
containing forest fires, while deprioritizing other images that
are relatively less latency-sensitive.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 809

To achieve this goal, we build Serval 1, a novel edge com-
puting framework designed to derive near-real-time insights
from LEO satellites. Serval allows multiple long-running
queries to execute simultaneously on incoming satellite im-
agery. Given a query set, Serval intelligently distributes com-
pute across satellite, ground station, and the datacenter. Simi-
lar to comodity products for satellite imagery analysis such
as Planet Analytics [1], Serval represents each query as a
logical intersection of a sequence of filters, e.g. “forest fires in
California” is denoted as three sequential filters {California,
forest, fire}, each of which involves geographical or statistical
computation (e.g., a neural network). Different queries may
have different latency-sensitivity and compute requirements.
Unlike past work [23], Serval does not discard any images
because new applications can emerge post-collection (e.g.,
historical data analysis or disaster management). For example,
recently Planet [51], a leading Earth observation company,
used their satellite imagery to retroactively track the origin and
flight of a balloon that entered the United States airspace [5],
which would be impossible if images had been discarded.
Instead, Serval focuses on dynamically reordering image
delivery to reduce end-to-end delays for latency-sensitive con-
tent.

The key challenges in Serval stem from the scale of satel-
lite imagery and the limited compute capabilities available
inside a LEO satellite. First, each satellite generates nearly a
Terabyte of data per day. Second, a satellite needs to perform
the query compute on this data using its limited compute ca-
pacity. LEO satellites generally have small solar panels that
generates limited power. For instance, the model used in [23]
has a 7W solar panel, a large fraction of which is utilized for
critical satellite function. However, a Jetson TX2 itself con-
sumes 11.3W. Moreover, solar panel power supply is further
diminished because it generates no power when the satellite
is on the dark side of the Earth. This means that the computer
onboard cannot be always on. Together, this means it is in-
feasible for all images being collected by the satellite to be
processed on-board.
Serval’s key insight is based on our observation that a

query is typically composed of two kinds of filters, determined
by the rate of change of the data the filter pertains to. The data
beneath some filters may change quite quickly—we call these
as dynamic filters. Examples include (the outline of) fires,
(position of) boats, etc. However, the data beneath the second
class of filters changes much more slowly—we call these
as glacial filters. Examples include forest identification, and
ocean and land boundaries—these boundaries do not often
change within a day (or even weeks).
Serval bifurcates a query—it assigns the temporally static

(glacial) parts of the query to spatially static entities (ground
stations, the cloud) while assigning temporally dynamic parts
of the query to spatially dynamic entities (satellites). Consider

1Smart Edge-based Realtime Visual Analytics for LeoSats

a query such as “forest fires in California”. Serval can de-
compose this query into identifying “California”, identifying
“forests”, and identifying “fire”. In this set, “California" and
“forests” are both glacial filters, while “fire” is a dynamic filter.
Our key insight is that glacial filters can be pre-computed on
the ground stations using stale imagery (e.g., a day-old im-
age). Such glacial filter computation can be done even before
an image is captured at the satellite and the results can be
conveyed to the satellite. Serval’s bifurcated approach has
two advantages. First, the pre-computed glacial filter results
on the ground means that the LEO satellite only needs to com-
pute the dynamic filters of a query. Second, the same glacial
filter inferences can be reused by multiple satellites (single
compute, multiple use). The glacial filter offload to ground
stations is enabled by the predictability of satellite orbits and
as a result, predictability of the geographical location and
time of each image.

For some filters that have to run in real-time, such as cloud
detection, we can infer high-quality priors by additionally
incorporating auxiliary information available at the ground
station, e.g., weather forecast information. Cloud detection
is an important component of RGB image analysis because
clouds occlude useful information and must be rejected prior
to processing. For instance, if the forecasted cloud cover is
either very low or very high, Serval can skip the cloud de-
tection step altogether aboard the satellite.

We evaluate Serval using a combination of trace-driven
simulations and hardware emulation on two applications: ‘for-
est fires in California’, and ‘vessel counting at ports’. These
applications represent opposite ends of a spectrum: the for-
mer outputs a set of images, while the latter outputs counts.
We designed a LEO satellite simulator and evaluated Serval
using real image traces collected from PlanetScope, a con-
stellation of over 200 CubeSats launched by Planet Lab. Our
paper is, to the best of our knowledge, the largest evaluation
performed using data collected by a real operational satel-
lite constellation. Specifically, our traces contain ten million
images collected using 151 satellites across 20 days. We
evaluate Serval using two different satellite configurations
and two different ground station configurations.

Contributions: We summarize our contributions below:

• We present the first system that distributes compute across
satellites and ground stations to deliver near-real-time
insights from Earth observation satellites.

• We propose a new bifurcated query execution approach
that offloads glacial (slowly-changing) filter computation
to the ground in order to reduce computational load on
satellites, and end-to-end latency.

• To the best of our knowledge, we are the first to evaluate
our system on a real-world raw and continuous trace col-
lected by the world’s largest LEO satellite constellation
for Earth observation.

810 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Our evaluation shows that the Serval scheduler improves
end-to-end median percentile latency on high-priority im-
ages from over 70 hours to 2 minutes (90-th percentile
from 149 hours to 47 minutes), while also improving de-
tection accuracy and reducing satellite compute load by
over 80%.

2 Background

In the 1990’s, Iridium, Globestar, and Teledesic [27, 30, 42]
planned constellations of tens of satellites to provide direct
connectivity to handheld terminals. Similarly, early imaging
constellations, such as NOAA’s series for weather sensing,
comprised of a couple of satellites. These early constellations
triggered important research in satellite networking [19, 21,
34, 38, 49, 52].

More recently, within the last 5-10 years, the emergence
of large LEO constellations, comprising of hundreds of satel-
lites, has been driven by lower launch and manufacturing
costs of small satellites. For instance Planet’s Dove constel-
lation for Earth imagery is composed of nearly 200 low-cost
cubesats (‘shoebox-sized’ satellites) with off-the-shelf com-
ponents. Our work focuses on these modern constellations for
Earth observation. These modern constellations differ from
traditional satellite constellations in three ways:
• Constellation size: Modern satellite constellations (e.g.,

Planet Inc. [26], Spire Inc. [3], etc.), consist of hundreds
of satellites as opposed to few satellites in traditional
constellations. This allows modern constellations to get
more frequent imagery of any part of Earth with revisit
frequency of few hours as opposed to a delay of several
days from traditional constellations.

• Data volumes: The low orbit of LEO satellites and im-
proved imaging hardware enables high resolution imagery
(e.g. 1m2 per pixel). They capture images of Earth in dif-
ferent parts of the frequency spectrum, e.g., RGB, Ra-
dio Waves, Infrared, etc. The multi-spectral imagery, in-
creased satellite number, and high resolution lead to in-
creased data volumes—from few GBs of data per day to
TBs of data per day. For instance, Planet’s Dove satellites
generates approximately one Terabyte of data per satellite
per day.

• Applications: Traditional Earth observation satellites
could only support delay-tolerant applications like crop
yield estimates, land cover use, etc. Modern constella-
tions gather images more frequently and offer the promise
of real-time applications like disaster monitoring, traffic
analysis, maritime monitoring, etc.

• Processing pipelines: Modern data processing pipelines
increasingly rely on modern Machine Learning (ML)
methods, in contrast to (merely) traditional signal pro-
cessing based approaches. For example, European Space
Agency’s Φ-Sat-1 [28] recently demonstrated the ability

to perform neural network-based cloud detection on board
a satellite.

Network pipeline: Finally, we provide a brief description of
satellite network pipeline as context for the rest of the paper.
LEO satellites for Earth observation operate in polar orbits
and go around the Earth once every 1.5 hours appoximately.
During each orbit, they pass over a different part of the Earth
due to Earth’s rotation. The data from these satellites is usu-
ally downloaded using few dedicated ground stations with
Gbps link capacities [25]. Due to a satellite’s orbital motion,
it can contact each ground station four to six times a day, with
each contact lasting up to ten minutes. To improve down-
load latency and increase the number of contacts, recent work
has proposed distributed ground station designs with multiple
general-purpose ground stations [60,61]. In the industry, Ama-
zon and Microsoft have launched ground-station-as-a-service
platforms [7, 46], wherein satellite operators can rent time on
existing ground stations to download data from satellites.

3 Serval’s Design

In this section, we present the problem setup, Serval’s ap-
proach to distributing compute across Earth and space, and
Serval’s incorporation of auxiliary information. Finally, we
describe Serval’s execution engine.

3.1 Problem Setup

Fig. 1 shows the three layers in a satellite networking system:
(1) the LEO satellite constellation containing hundreds of
orbiting satellites, (2) few ground stations across the world,
each of which can communicate with satellites, and (3) the
cloud consisting of one or more data centers. The satellites
continuously image the Earth’s surface and send the captured
images down whenever they make the next contact with a
ground station. The ground stations eventually upload images
to the cloud.

The satellites are energy-constrained, i.e., they have ac-
cess to limited amounts of power, and only a fraction of the
power is available for compute. The primary usage of the
power is to maintain temperature, power attitude determina-
tion, and control systems, communicate with ground stations,
and other critical satellite functionality. We assume each satel-
lite has limited computational capability such as a Jetson
TX2 or Jetson AGX Orin. This assumption is validated by
recent proposals of incorporating compute in satellites in
academia [15, 22, 23, 44, 45], and by recent launches that in-
corporate computational capabilities on satellites [4, 28].

Ground stations have no power limits and are equipped
with more (though not infinite) computational resources than
satellites. This assumption is reasonable in both traditional
ground station designs which were capital-intensive, as well

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 811

Figure 2: Serval represents queries as a set of sequential
filters. The picture above represents two queries: ‘images
containing forest fire in California’, and ‘Number of ves-
sels at ports’.

Figure 3: Example output images for queries ‘California
Forest Fire’ (left) and ‘Vessels Counting in Port’ (right).

as in modern ground station designs wherein cloud providers
co-locate compute resources at the ground stations.

Graph representation: Application developers who are
customers of the satellite constellation operator company sub-
mit queries that will run on the Earth observation imagery.
For example, Planet Inc. has a product named “Analytics"
which allows users to run user-defined analytic applications.
The user can choose a specific object detection model to run,
and limit the set of images to run the selected model on by
defining additional filters based on image metadata, includ-
ing date, time, geographic location, cloud cover ratio, etc. [1].
However, today such queries are executed offline on the cloud
once all the images have been delivered to the cloud — we
seek to execute them in real-time.

While some queries may not be sensitive to taking days to
generate a response, several queries are latency-sensitive and
require responses in minutes. The satellite operator company
may charge a premium for such latency-sensitive queries.
Examples include: (a) a forest department may design a query
like ‘images of forest fires in California’; (b) a trading firm
may be interested in a query like ‘number of ships at major
ports across the world’; (c) a disaster response team might
be interested in ‘images of, or number of, flood-damaged
buildings in Florida’.
Serval supports two types of queries: (I) image outputs:

queries that require images to be outputted matching the query,
e.g., forest fire images from California may be needed for a
detailed inspection of the damage and to create a plan for
action, (II) statistic outputs: queries that only require the
inference to be delivered, e.g., a hedge fund may need the
count of cars in different parking lots across Beijing, rather
than the actual images, or, financial traders may need to know

the count of ships at a port.
We represent each query as a sequence of filters, which is

consistent with the current commodity products such as Planet
Analytics [1]. For example, ‘forest fires in California’ can be
represented as California→forest→cloud→fires. Similarly,
‘ships around ports’ is represented as Port→Cloud→Ship
count. Note that each query contains a cloud filter to remove
images that are occluded by clouds. The filter representation
is depicted visually in Fig. 2.

Each filter is a computational block that takes an image as
an input and outputs either a boolean value or a number. For
example, the California filter performs a geographical check
and returns True or False, i.e., do the geographical coordinates
of the image overlap with the geographical boundaries of Cal-
ifornia. Similarly, the filters Vessel counter may be a neural
network (a stock network, or one supplied by the application
developer) that detects and counts the number of vessels in an
image. Cloud, Forest, and Fire are other neural network-based
filters in examples above.
Serval’s goal is to prioritize images that pass all the filters

corresponding to at least one latency-sensitive query. We also
note that the filter representation of our queries lends itself
to cross-query optimization. For example, if two different
queries rely on the same underlying filters, Serval does not
need to perform the computation twice, e.g., if two queries
both rely on forests in California, then we do not need to
perform forest detection twice. Similarly, Cloud filter needs
to be computed only once for an image even though the image
may be relevant to multiple queries.

Note on inter-satellite links: While Inter-satellite Links
(ISLs) have generated a lot of interest, none of the Earth ob-
servation constellations today are equipped with ISLs. Hence
we do not consider ISLs. Starlink demonstrated feasibility of
laser-based ISLs [41, 57], and Planet and Telesat announced
their plans to explore radio-frequency ISLs across orbits (e.g.,
from Low Earth Orbit to Middle Earth Orbit or Geostationary
Orbits) [36]. Given the uncertainty over feasibility and type
of ISLs, we choose to exclude them in our analysis. If ISLs
mature in the future, Serval’s design can be generalized to
accommodate and exploit ISLs.

3.2 Distributing Compute Across Earth and
Space

Today’s delay between image capture at satellite and image de-
livery to the cloud/end-user ranges from several hours to many
days. To enable near-realtime insights for the end user(s),
Serval’s primary goal is to reduce this delay to minutes
for latency-sensitive queries, while accommodating the con-
straints imposed by the satellite’s limited power and compute
capabilities. Towards this goal, we first consider the place-
ment of computation at the different compute units: satellite,
ground station, and the cloud servers. There are two existing

812 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

approaches to perform inference on Earth imagery:
(i) In-order Delivery and Computation: In the traditional

approach, images are delivered to the cloud in the same times-
tamp order as they were captured by the satellite, and then
inference is run on these images in the cloud. This approach
suffers from large delays because of networking bottlenecks.
Specifically, the LEO satellites exhibit fast motion with re-
spect to ground stations on the Earth [23, 61]. Therefore,
any ground station-satellite contact is fleeting – less than ten
minutes per contact, few contacts per satellite per day. This in-
termittent connectivity, in conjunction with the small number
of ground stations, leads to large networking delays. Since
images cannot be processed before they are received at the
data center, the time-to-insight for this approach is very large.

(ii) In-orbit Computation: Recently, there is a growing push
to place computation on the satellites. The first wave of this
push demonstrated the use of satellite computation to reject
cloud-occluded images [28]. Orbital edge computing [23]
broadens the scope of satellite computing to reject images
that do not meet the application goals, e.g., if the goal is to se-
lect images containing buildings, the satellite runs a building
detector and rejects images that contain no buildings. This
approach places a high computational load on satellites.

Specifically, such in-orbit computation techniques suffer
from two problems: (a) as the number of applications in-
creases or becomes more complex (such as the compositional
filters discussed in Sec. 3.1), satellites cannot accommodate
this compute with their limited resources, and (b) new appli-
cations emerge for historical data. Such applications may not
be known a priori. If a satellite discards data that does not
match current applications, new applications that emerge later
cannot be served.
Serval takes the practical approach of distributing com-

pute between satellites and ground stations. Our approach is
centered around three properties of satellite imagery:

• Image locations are predictable: Satellites follow pre-
dictable orbital paths that can be estimated using their
orbit descriptors, e.g., using Two Line Element (TLE) or-
bit descriptors published by observatories as well as many
satellite operators. Therefore, even before an image is
taken, we can predict what the geographical content of
the image is.

• Content of most images is glacial: For most images
taken at a given location, most of their content is glacial,
i.e., stationary—it does not change rapidly within a few
days. An image that contains buildings yesterday, will
likely contain buildings today. Similarly, forests, desserts,
farms, and other land types rarely change over the time
span of a few days.

• Ground station compute capabilities are rising: In-
creasingly, ground stations are designed to include com-
putational resources. These computers are more powerful
and better resourced in terms of power and networking as

compared to computational devices on the satellite.
Based on these observations, Serval divides the filters for

all the queries into two types: (a) fast-changing dynamic filters
that need to be executed on the satellite at run-time, and (b)
glacial slow-changing filters that can be executed using stale
imagery on the ground stations. Serval executes the glacial
filters at the ground station or the cloud before the image is
captured and uses the ground stations to communicate the
results to the satellite in advance. This allows the satellite to
process a very small fraction of images on the satellite in the
bottleneck execution path.

Pre-computing such glacial information can significantly
reduce the compute requirements on the satellite. As satellites
orbit rapidly around the earth, their footprint looks like thin
belts that extend almost vertically from the south pole to the
north pole. Therefore, ordinary user requests, such as forests
in California or farm land in the U.S., generally only makes
up a tiny portion of a satellite’s imagery.
Serval attaches a dynamic or glacial attribute to each filter

to aid the execution engine. This can either be supplied by the
developer, or estimated from data. Consider the query ‘forest
fires in California’. We find that among the millions of images
captured by a constellation, only 0.4% contain any land area
in California. Two-thirds of California images contain forests,
i.e., only 0.25% of all images captured by the constellation
contain ‘forests in California’. Since we can estimate the
exact set of images that will contain ‘forests in California’
using historical data, the satellite needs to run a fire detector
on only this small set of images. In this case, California and
Forest are glacial filters, and Fire is a dynamic filter. Only
dynamic filters need to run on satellites using fresh data.

3.3 Incorporating Auxiliary Information
Sources

Ground stations, unlike satellites, have continuous access to
auxiliary information sources like weather forecasts. We ask
if such information can be used by Serval to either improve
inference quality or to skip computation on the satellite.

We first make the observation that clouds occlude many of
the images taken by a satellite, and a cloud-occluded image
is not useful for any query. In fact, there has been a lot of
work in cloud detection for satellite imagery before [28, 35,
47, 53], both using statistical methods [35, 53] and neural
networks [28, 47].

Given this observation, Serval’s key idea is to leverage
weather forecasts in order to skip on-board processing of
images over areas that are forecast to have high cloud cover.
Concretely, if the probability of cloud cover is high, then
Serval assigns a ‘cloudy’ tag to the image and exclude it
from any other computation and de-prioritize its transfer to the
ground station. Conversely if the probability of cloud cover is
very low, then Serval assigns a ‘cloud-free’ tag to the image.
In this case, the processing pipeline on the satellite can skip

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 813

Figure 4: Serval’s satellite execution engine re-orders the
images to prioritize latency-sensitive data download.

the Cloud filter and proceed to the next steps of computation.
Finally, all other images that are not tagged in either of the
above ways are processed through the Cloud filter on-board
the satellite.

In practice, we use cloud probability thresholds of
{0.2,0.8} for the above processing. If the cloud cover proba-
bility for an image is less than 0.2, Serval assumes the image
to be cloud-free. If the probability is greater than 0.8, Serval
de-prioritizes the image. If the probability is between these
two values, Serval processes the image through the Cloud
filter, which is a neural network model.

While the current version of Serval does not incorporate
weather forecasts in other inferences, there are many other po-
tential optimizations for future work. For applications like for-
est fire, weather forecasts also contain information regarding
forest fire risks, which can be used to select high-likelihood
images to run filters on. Also, cloud detectors are known to
confuse smoke and cloud which can be improved by com-
bining cloud detection results and weather forecasts. Finally,
auxiliary information may contain other types of information
such as information extracted from previous satellite images,
e.g., if a different satellite observed forest fire in the same
region a few hours ago.

3.4 Serval’s Execution Engine

We describe how Serval captures the insights discussed in
Sections 3.1-3.3. We discuss how Serval’s execution engine
works on a satellite, at a ground station, and in the cloud.

3.4.1 The Satellites

Fig. 4 shows that each satellite maintains three queues for
images: (i) a low priority queue, (ii) a high priority queue,
and (iii) a compute queue. The low priority queue contains
images that do not match any latency-sensitive query. The
high priority queue contains images that definitely match
latency-sensitive queries. The compute queue contains images
that need more computation to be performed on the satellite

in order to ascertain their status.

Network delivery order: When the satellite comes into con-
tact with the ground station, it will first downlink images in the
high priority queue. If the high priority queue is emptied and
ground station contact remains, it will downlink the images
in compute queue. This is because even though computation
hasn’t run on these images on the satellite, these images have a
higher likelihood of being latency-sensitive than images in the
low-priority queue. Finally, if the compute queue is emptied
and ground station contact remains, it will downlink images
from the low priority queue. This multi-queue architecture
allows Serval to benefit from limited compute available on
satellites, even when it may not be able to compute on all
images.

Image placement in queues: When a satellite comes in
contact with a ground station, the ground station sends the
following information to the satellite: (a) pre-computed val-
ues for glacial or slow-moving filters for each image that
the satellite is expected to capture in its upcoming orbital
path leveraging the observation from Sec. 3.2 that satellite
orbits are predictable, and (b) weather predictions for the ge-
ographical location corresponding to each image the satellite
is expected to capture. For each image captured by a satellite,
Serval’s first goal is to identify whether the image meets the
requirements for any (at least one) of the on-board queries.
Serval does so by immediately applying all pre-computed
filters. For a given query, if any of its pre-computed filters
rejects the image, the image is considered rejected by that
query. If an image is rejected by all queries, then the image
is placed in the low priority queue. Note that in practice this
entire filtering process is fast as it does not involve signifi-
cant compute but is a quick classifier based on pre-computed
inferences received from the ground station.

To be placed in the compute queue, an image must meet
two criteria: (a) all the pre-computed glacial filters in at least
one query must select that image, and (b) there must be at
least one dynamic filter in that query that needs computation.
For example, for ‘forest fires in California’, if an image is
selected by the California and Forest filters, it is placed in the
compute queue to run the Cloud and Fire filters.

Any image that is selected by all the filters in at least one
query is placed by Serval into the high priority queue. If a
query has some dynamic filters, then an image moves to the
high-priority queue from the compute queue. For example,
in the example above, if the image in the compute queue is
selected by both Cloud and Fire filters, it will move to the
high priority queue. Note that, if all the filters in a query are
glacial filter (precomputed on the ground station), then, some
images can skip the compute queue and directly move to the
high priority queue as well.

Finally, if the output of a query is an inference and not an
image (e.g., Vessel Count), then Serval places the image in
the low priority queue and creates an empty image with just

814 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the metadata information (e.g., number of cars in parking lots
or number of vessels at a port). Serval places this (much)
smaller metadata value in the high priority queue.

In situations where the satellite has sufficient surplus energy
to compute on an image, Serval pulls an image from the
compute queue and runs the dynamic filters corresponding to
the query on the image. At any time, if the satellite determines
that an image is not possibly high priority in the multi-stage
filtering process, it will immediately put it into the low priority
queue and start doing computation on the next image. On
the other hand, if the satellite determines that an image is
high-priority, it will put the image into the high priority queue
without running additional filters on that image. In each queue,
images are ordered by their capture timestamp.

3.4.2 The Ground Stations

Recall that ground stations have much higher computation
capability than the satellites, while having much fewer power
constraints. In Serval, the ground station maintains two
queues: a high priority queue and a low priority queue. When
a ground station receives an image from the satellite, it first
runs the uncompleted filters of the query and the places the
image in the high priority if the image is selected by all the
filters in at least one query, otherwise it places it in the low
priority queue. Whenever the ground station has free computa-
tional resources, Serval opportunistically uses the downtime
to compute the results of ‘glacial’ filters for upcoming satellite
contacts. A ground station has a steady backhaul connection
to the cloud, and uses this backhaul to constantly stream im-
ages to the cloud starting from the high-priority queue.

3.4.3 The Cloud

The cloud acts as a frontend to all users. The images and
insights will be uploaded to the cloud and made available
for users to download. The cloud also acts as the central
coordinator of the entire Serval system and computes the
future orbits, positions of satellites and other preemptively
computed values for the images taken in the future. The cloud
will also schedules satellite-ground station contacts and sends
the pre-computed values to the appropriate ground station
to be relayed to the satellites in the control plane. Fig. 5
demonstrates Serval’s placement of different filters for the
example queries in Fig. 2.

4 Experimental Setup

We evaluate Serval using a combination of trace-driven simu-
lations and emulations. Our code is open source and available
at https://github.com/ConnectedSystemsLab/Serval.

Figure 5: Serval Example Execution: The placement of
different compute units for queries defined in Fig. 2.

4.1 Applications
We picked two sample user applications to evaluate Serval’s
performance: (a) identification of all Forest Fire images in
California, and (b) Counting Marine Vessels in Ports in the
world’s busiest ports, including Shanghai, Singapore, Hong
Kong, Hamad, and Jebel Ali. These applications cover vast
geographical areas, and yet they are different in output (im-
ages vs. count) and in their internal query filters, ML models,
and resultant computational needs.

Fig. 2 showed that the California Forest Fire application is
a sequence of four filter stages:
1. Is the Image from California? A geographic filter (Glacial
filter);
2. Is the Image in a woody zone? Computed from stale data
(Glacial filter);
3. Is the Image cloud-free? (Dynamic filter); and
4. Does the Image contain smoke or haze from a forest fire?
(Dynamic filter).

Using Planet images, we trained three deep-learning mod-
els for the identification of the forest, fire, and cloud. The
forest and fire identification is based on a ResNet architec-
ture [31] while the cloud identification is based on a Mo-
bileNet architecture [33]. The label for woody/non-woody is
obtained from the USDA Forest Service; the labels for cloud
and non-cloud are obtained from Planet UDM2; the fire labels
are manually created. We divided our data into a training set
and a testing set.

Our second application, Marine Vessel in Ports Counting,
is a sequence of three filter stages:
1. Is the Image near one of the focus port areas? A geographic
filter (Glacial filter);
2. Is the Image cloud-free? (Dynamic filter); and
3. Counting the number of vessels in the image. (Dynamic
filter).

We trained a ResNet-based [31] vessel classifier using a
Kaggle planet imagery dataset2. This dataset did not con-
tain bounding boxes or vessel counts as training labels; it
just contained vessel classification labels. Therefore, we used

2https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 815

https://github.com/ConnectedSystemsLab/Serval

the trained classifier and a weakly supervised object detec-
tion [58] (WSOD) to draw object bounding boxes on sample
images taken by Planet. We then trained a yolov5 [37] model
using our automatically labeled training images. We divided
our data into a training set and a testing set.

Obtaining historical data for forests: To simulate extract-
ing forest data from stale images, we initially run the forest
model over images collected from the first 10 days. We, then,
evaluated Serval over the last 10 days of the trace we ob-
tained. To label each image in the later 10 days, we find all
images in the first 10 days that intersect with the image, and
if any such image is labeled as forest, we determine that the
target image is forest.

Weather data: We obtained weather forecast data from open-
meteo for all the images [2]. For each image that requires
cloud detection, if the cloud coverage is more than 80%, we
determine that it is cloudy without running the cloud detection.
Similarly, if cloud coverage is less than 20% we determine
that it is not cloudy without running the model. If the cloud
coverage is between 20% and 80%, we run the cloud detection
model.

4.2 Real-world Dataset
We obtained a large image dataset from Planet’s Dove satel-
lite constellation [50], comprising nearly 200 satellites. This
dataset contains the metadata (size, location, etc.) for all im-
ages captured by all 200+ satellites between July 1st and July
20th, 2021. We use this time interval because of the preva-
lence of forest fires in California during the summer of 2021.
This dataset contains metadata for ten million images. Due to
the limited quota of images we can download, we analyzed the
metadata to find images in California and multiple port areas.
Based on our analysis of the metadata, we requested around
40k complete images from Planet’s Planetscope API [51].
Each image contains 4 channels (red, green, blue, NIR). The
collective size of our downloaded images is 13 TB.

Planet has 3 different types of sensors to collect images:
PS2, which covers an area of 24km by 8km; PS2.SD, which
covers an area of 24km by 16km; and PSB.SD, which covers
an area of 32.5km by 19.6km. The runtime of a neural network
largely depends on the image size and not the content of the
image. Therefore, for the images that we only downloaded
the metadata, we used the average running time of the models
as an assumed running time for the corresponding model on
those images, when necessary.

4.3 Hardware-benchmarking and Simulator
Design

First, we use real hardware to benchmark the performance
of different filters, such as the Machine Learning models for
various filters. Table 1 shows that we evaluated Serval using

two different modes of on-board computers for satellites:
Jetson ORIN 30W and 15W modes. The microcomputer is
equipped with a GPU that is able to run neural network based
models in the images.

Mode 15W 30W
CPU Cores 4x1.1MHz 8x1.7MHz
GPU Speed 420 MHz 624 MHz

RAM 32 GB 32 GB
Storage 64 GB 64 GB

Table 1: Jetson AGX Orin Hardware Configurations

We tested the performance of Serval at scale in simula-
tion. Our simulator computes the orbits of satellites using
Two-Line-Element [32] orbit descriptors for each Planet satel-
lite. The simulator tracks satellite-ground station contacts and
the link quality of each of these contacts by following the
specifications of Planet’s ground stations in [25]. The simula-
tor also keeps track of the energy generation and consumption
on each satellite, as well as the compute time on it. We ran
the simulation with a time granularity of ∆t = 1min. For each
satellite, we assume that it is equipped with the Jetson AGX
Orin and operates in one of its two power modes.

Power management: Our simulator models the satellite
power profile in Table 2. The satellite generates power using a
solar panel. The satellite’s ADACS (Advanced Data Acquisi-
tion and Control System) and other systems always need to be
on and consume continuous power. We select these numbers
to match previously reported numbers [23]. When the satellite
takes photos or transmit power, it will also cost energy. We
schedule the computation in a greedy approach: whenever
there is spare power available and images requiring compu-
tation, the satellite will run the next-queued computation (if
any).

Resource limit: We run two applications that target a small
fraction of the Earth’s surface area. In practice, many more
applications may run on satellite imagery and cover a larger
geographical area. Therefore, for fairness, we limit network
and compute usage for Serval to 1% of the total network
and compute capacity available on the satellite (roughly pro-
portional to the surface area of the geography we cater to
as compared to all the area imaged by Planet’s satellites).
Note that high-priority images identified by Serval are bot-
tlenecked by this network restriction, other images (e.g., from
other locations) can still use the full network.

Ground stations: We evaluated Serval’s performance un-
der two different ground station configurations: (a) a state-
of-the-art distributed ground station architecture [61] where
we placed 200 ground stations across the globe; and (b) a tra-
ditional monolithic ground station configuration from Planet’s
current ground station system [20,24]. We model approximate

816 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Component Power
ADACS 1.13W

Computation Depends on hardware
Camera 6J per photo

Transmission 50 W

Table 2: Power consumption of the satellites

Application 1 Application 2
Filter Amount Filter Amount
Total 10097097 Total 10097097

California 37037 Port 2642
Forest 26153 Cloud-less 1769

Cloud-less 24578 Vessel 1769
Fire 243

Table 3: Number of images in each stage of the pipeline.

locations of Planet’s ground stations from publicly accessi-
ble information. The ground station system in our simulation
consists of 12 different ground stations distributed across the
globe, carrying 48 antennas in total, where each antenna can
talk to a single satellite at a time. We assume that the ground
stations have a steady backhaul Internet connection that is
sufficient to transmit everything it receives to the cloud.

We used the link quality model described by Planet in [25]
for traditional ground station setup. For distributed ground
station network, we scaled down the downlink data rate for
each ground station to 25%—this makes the total downlink
bandwidth constant across the two scenarios (as done in [61]).

5 Microbenchmarks

5.1 Number of Final Images ≪ Number of Col-
lected Images

Table 3 quantifies the proportion of latency-sensitive images
across different days. For the California forest fire application,
just 0.36% of the images pass the geographic filter (Califor-
nia) and just 0.26% of the images pass the Forest filter. The
number of actual fire images is just 243. Therefore, in Serval,
the satellite needs to analyze at most 26k images and select
243 latency-sensitive images to download. For the vessel in
ports application, we find 1769 images containing vessels at
ports. These small final image counts indicate the potential
latency benefits from transferring only a small (but just right!)
set of images from the satellite down to the cloud.

5.2 Preemptive Compute at Ground Station
We estimate the burden on the ground station to run the re-
quired preemptive computation task by profiling it on a large
cluster of computation nodes. The results show that on one

10
20

RA
M

 (G
B)

0

1

CP
U

(%
)

0

1

GP
U

(%
)

19 17:30 19 17:40 19 17:50 19 18:00 19 18:10 19 18:20 19 18:30
Minutes

10

15

Po
we

r (
W

)

Figure 6: Resource utilization over time for satellite “103b"
passing over California

data-center-grade GPU such as NVIDIA Tesla K80, it takes
an average of 4.39s to run the forest detector on one image
taken by the satellite. Running a forest detector on all Califor-
nia images across ten days takes no more than 24 GPU hours.
This cost is distributed across multiple ground stations (at
least 12 stations in our setup) and due to the station’s higher
power, this is preferable to running the same compute on the
satellites. Further, because such data is glacial, this station
runtime (O(hours)) suffices to update the satellite’s glacial
filters and auxiliary information once a day.

5.3 Hardware Emulation
We tested the system load of a typical satellite under Serval
via hardware emulation. We emulate the satellite with a Rasp-
berry Pi serving as an onboard control system, connected to a
Jetson ORIN serving as the computation system. The Rasp-
berry Pi “captures" images and sends them to the Jetson for
running on-board computation. After receiving results from
the Raspberry Pi, the Jetson will execute Serval’s execution
engine (Section 3). The Raspberry Pi will send images over a
TCP connection for emulating the satellite-ground station link,
to a dedicated server. We emulated the time period from 17:30
on July 19, 2021, to 18:30 on July 19, 2021: when satellite
“103b" flies over California and does on-board computation
on the interesting images.

Figure 6 shows the variation of system load over time. We
observe that before 18:05, the Jetson periodically wakes up to
do heartbeat communication with the controller (Raspberry
Pi) and consumes low energy. When the satellite starts to pass
over California, we see a significant increase in all types of
resource usage on the Jetson machine, especially GPU usage,
because the applications require running neural networks on
the GPU. After the satellite passes California, the CPU, GPU
utilization, and power consumption drop to normal levels. We
use the numbers obtained from these emulations to benchmark
different filters in our simulated at-scale evaluation below.

We trained different deep learning models (as described
above) to perform tasks of cloud detection, forest detection,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 817

vessel detection, and forest fire detection. Table 4 presents the
average run time of each filter on the Jetson device. Specif-
ically, we report the time taken to classify one image using
the filter.

Model 15W 30W
Cloud 1.5 3
Forest 17 8.5
Fire 0.246 0.245

Vessel 3.85 1.846

Table 4: Average runtime of filters on Jetson machine
(seconds)

6 End-to-End Results

6.1 End-to-end Performance

We evaluate the end-to-end latency for all the latency-sensitve
imagery that matches our two applications. We define the la-
tency as the delay between when the corresponding image is
generated and when the information is delivered to the cloud
and available for the user to download. For the vessel counting
application, just the vessel count needs to be delivered to the
user. Fig. 7 shows the distribution of the end-to-end latency
achieved by Serval compared to in-order delivery. We plot
this result for two hardware configurations of the AGX ORIN
– 15W power consumption and 30W power consumption, to
benchmark Serval’s benefits across different types of com-
putational platforms. AGX ORIN can operate in these power
modes and offers less computational capability in the lower
power mode.

Using the 15W power mode, and a monolithic ground sta-
tion architecture, Serval reduces the median latency by 70×
from 78.2 hours to 1.1 hours, and 90-th percentile from 145.55
hours to 2.71 hours. For Serval, a large part of this latency
stems from the fact that even after high-priority images have
been identified, they must wait for the first ground station
contact. Distributed ground stations (DGS) [7, 46, 61] have
recently been designed to provide more opportunities for
data download. In the DGS case, Serval can download im-
ages with a median latency of 0.03 hours, compared to 71.71
hours median latency for in-order delivery. Even the 90th per-
centile for Serval is 0.78 hours, compared to 149.05 hours
for in-order delivery. This result shows that even with sim-
ple compute capabilities on the satellite, Serval can achieve
near-realtime delivery of latency-sensitive insights.

Next, we compare results for the high-power 30W mode on
Jetson AGX ORIN deployed on the satellite. In this case, the
delays for the baseline do not change because it includes no
compute. For Serval, the median delay is 1.1 hours (90-th
percentile – 2.7 hours) and 0.03 hours (90-th percentile – 0.78
hours) for monolithic ground stations and DGS respectively.
Note that the median delay for monolithic stations does not

change. This validates our hypothesis that the delay stems
from the sparsity of ground station locations. When com-
bined with DGS, Serval can achieve a median latency of
few minutes. Unless noted otherwise, the evaluation below
is performed using the 30W, DGS, 1% resource-constrained
setting.

Impact of scaling up applications: Recall that, for the eval-
uation below, we limit the Serval’s resource usage for high-
priority images to 1%. We would like to see how having more
or less applications would impact the performance of Serval,
which is equivalent to changing the resource usage threshold.
We tested resource limit values of 0.05%, 0.1% and 0.5%.
Figure 7c shows that Serval’s performance remains steady
even when the resource limit is reduced to 0.5% from 1%.
Its performance starts to decrease when the resource limit is
reduced to 0.1%, and the computation starts to emerge as a
bottleneck. As discussed in our future work (Sec. 8), such
bottlenecks can be overcome by architectural optimizations.

Effect of running computation on satellites: To evaluate
the effect of running compute on satellite, we compared the
performance of Serval against the case when satellites will
do no computation tasks on board but only prioritize all im-
ages based on glacial filters alone. The results are illustrated
in Figure 8a. By running compute on the satellite, Serval
was able to reduce the median latency by 23×.

One might wonder why filtering based on glacial filters
is insufficient since the number of California forest images
is small. This is because the high-priority traffic arrives in
a bursty manner: when a satellite is over an area of interest,
it continuously captures images that need to run the com-
putation. When a satellite is not over an area of interest, it
does not require computation. This is true for all applications
whose images are not evenly distributed across the globe.
Therefore, when a satellite is in contact with a ground station,
the proportion of images in transmission queues with high
“pre-computed" scores could be much larger than the average
during a satellite-ground station contact. On the other hand,
we know that for instance, only 1% of images are forest fire in
all California forest images. Therefore, running computation
on the satellite can help filter a significant chunk of images
that pass the glacial filter pre-computed on the ground.

Benefit of using auxiliary information: To validate our
decision to use side-channel information for cloud detection,
we first checked the accuracy of weather information. The
results are shown in Table 5. In this experiment, we only run
the cloud detector on images that have a cloud coverage value
between 20% and 80%. From the table, we can see that this
method saves 83.6% computation on cloud detection while
yielding an accuracy of 96.3% and recall of 99.3%. Indeed,
we can precisely estimate the cloudiness of a majority of
images without sacrificing accuracy, saving a large amount of
compute.

818 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
In-Order
Serval
In-Order (DGS)
Serval (DGS)

(a) Latency with Jetson ORIN in 15W
mode

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

In-Order
Serval
In-Order (DGS)
Serval (DGS)

(b) Latency with Jetson ORIN in 30W
mode

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval 0.5%
Serval 0.1%
Serval 0.05%
In-Order

(c) Serval’s performance with varying re-
source constraints

Figure 7: End-to-end latency of Serval compared to in-order baseline. Serval can achieve a median end-to-end latency of
0.1 hours when using distributed ground stations. Serval’s performance is stable across different hardware constraints.

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval (no compute)
Serval

(a) Effect of running computation on satel-
lites.

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval (no weather)
Serval

(b) Effect of weather information.

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval
Serval (no forest)

(c) Effect of using historical data on forest
(California forest fire).

Figure 8: Effect of different components in Serval. (Ground station setup is DGS)

Prediction Cloudy (>0.5) Not Cloudy
(<0.5)

High (>0.8) 251 226
Medium (0.2-
0.8)

1668 4873

Low (<0.2) 1245 31750

Table 5: Accuracy of weather information. Each row indi-
cates the weather forecast, and each column indicates the
output of the Cloud filter.

We evaluated the weather information’s contribution to
the end-to-end performance by comparing Serval against
when the side channel information is disabled. The results are
shown in Figure 8b. We can see that by employing weather
information, Serval improves the median latency by 8.8×.

Benefit of using historical data: Does pre-computation of
glacial filters on the ground station have an advantage? To
test this hypothesis, we move the Forest filter to the satellite
and test if this move hurts the latency. For this experiment,
we consider a single application: “California forest fire". The
comparison is shown in Figure 8c. We can see that the median
latency increased by 1670× when we don’t use historical data.
We observe that there are two reasons for this large perfor-

mance drop: (a) running forest model on satellites consumes
a great amount of computation time (the number of images
is larger, and each image requires more computational re-
sources) and (b) since the model is being run in real-time,
some of the fire images do not look like forest for the neural
network, because of the presence of the smoke. Therefore,
these images get misclassified as ‘not forest’ and placed in
the low priority queue. However, Serval considers stale data
for such analysis when it places the glacial filter execution
on ground stations. Such images are not occluded by forest.
The second benefit is an unintended consequence of running
glacial filters on ground stations.

Comparison to early discard : As an extension to the above
experiment, we compared Serval’s performance against an
early discard scheme inspired by OEC [23]. OEC relies solely
on computation on satellites and discards all images deemed
low priority. Similar to the above experiment, since OEC does
not use historical data or ground station computation, it incor-
rectly discards some images that contain forest fire. In fact,
OEC only successfully identified and downlinked 14.7% of
all images with forest fire. Since it discards all “low priority"
images on the satellite, the “false negative" images do not
even have a chance to reach the user. The “false negative"
images appear in the “long tail" distribution in Figure 8c. In
contrast, Serval’s classifier makes fewer mistakes because

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 819

6600 6800 7000 7200 7400
Time (min)

10 1

100

101

Av
er

ag
e

Po
we

r (
W

)

Transmission
Computation
Regular

Figure 9: Average Power over time for different applica-
tions

of its reliance on historical data. Even when Serval makes
a mistake, it just adds additional latency to that image rather
than discarding that image. For the vessel counting applica-
tion, both OEC and Serval are able to downlink all images
containing vessels primarily because historical data doesn’t
help with the classification strategy.

6.2 Satellite Power Usage
We monitored the power usage for different functions during
the simulation period. The energy cost consists of 3 main
parts: regular power (ADACS and other essential functions
to keep the satellite alive), transmission power and compute
power. Figure 9 illustrates a sample satellite’s ("Dove 103b")
power consumption profile during a period in which it flys
over California. We observed that while the satellite is con-
stantly consuming power for regular functions and from time
to time for transmission, the compute function is only acti-
vated when the satellite receives some potential high-priority
image. We can see that the compute power consumption is
much more sparse than either transmission or regular main-
tenance. In our simulation, we saw 68.1% energy being con-
sumed by transmission, 28.9% consumed by regular mainte-
nance, and 2.9% consumed by computation. Because of our
limit on resource utilization for the high-priority applications,
we only used 1% of the 2.9% total compute energy, and the
rest of the energy was reserved for other computation tasks
(e.g., for other tenant applications, satellite maneuvering, etc.
).

7 Related Work

Our work builds on results in terrestrial edge computing, video
processing systems, and orbital edge computing.

Terrestrial edge computing pipelines: Edge computing has

been a widely studied topic in terrestrial networks [8,13,17,29,
54, 55] for diverse applications such as traffic camera analyt-
ics [8, 12], augmented reality systems [56], and robotics [63].
These systems tend to push computation as close to the video
sensor as possible while being cognizant of the resource con-
straints of the edge devices. Serval naturally builds on this
line of research. Satellites are similar to resource-constrained
mobile devices with relatively weak connectivity to the cloud.
The LEO setting presents the additional challenge that the
sensor devices (satellites) themselves are moving. Serval
addresses this by leveraging the predictable orbital paths of
satellites, query filters and bifurcation, and using auxiliary
information.

Video processing systems: Much recent work [6,8,13,39,48,
65] has focused on improving the execution of video analytics
pipelines on edge devices. These systems consider different
aspects of optimizing video analytics such as efficient model
retraining [13], model merging for efficient execution on edge
GPUs [48], etc. This line of work makes varying assumptions
about the availability of compute resources such as powerful
GPUs and continuous connectivity with the cloud—these lux-
uries are not available on satellites. Nevertheless, ideas from
video processing systems are complementary to Serval, and
our work opens an avenue to explore such future directions.
For instance, model merging, an idea from video process-
ing systems, can be useful if the models (inside the filters of
different Serval queries) share a lot of common layers.

Satellite edge computing: Traditional satellites packaged
radiation-hardened specialized hardware [10]. Due to the
lower orbits of LEOSats which suffer much less radiation
exposure, and for economies of scale in manufacturing, there
has been a move towards general-purpose hardware for
LEOSats [28]. This has blossomed research in satellite edge
computing systems [15, 16, 22, 23, 43–45]. Some papers pro-
pose new edge-enabled functionalities for communication
megaconstellations [15, 16], e.g., deploying content delivery
networks in space to improve network performance. This
work is independent of Serval due to its focus on a different
class of satellites. [45] and [44] evaluate the performance
of compression techniques and Machine learning models on
satellite-compatible hardware such as NVIDIA Jetson Nano
and/or NVIDIA Jetson AGX. We believe such optimizations
demonstrate the feasibility of deploying Machine Learning
workloads on satellites, and such architectural optimizations
(including from other domains like approximate computing)
can be applied orthogonally to Serval to improve perfor-
mance.

Our work is closest to Orbital Edge Computing (OEC [23])
and Kodan [22]. Both OEC and Kodan aim to reduce the
amount of satellite imagery transferred to Earth by enabling
early rejection of imagery that is not considered useful. While
OEC reimagines different satellites in a constellation as a com-
putational nanosatellite pipelines that seamlessly distribute

820 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

computational tasks, Kodan focuses more on the computation
at each satellite. In contrast to both these works, Serval does
not discard any images on the satellite, and focuses on reduc-
ing the delay of latency-sensitive images via prioritization
and reordering. This has the advantage that post facto queries
on historical can be performed, e.g., in a recent high-profile
incident, Planet used historical satellite imagery to trace the
historical motion of a Chinese balloon entering into the US
airspace from its origin to destination [5]. Kodan’s contri-
bution is orthorgonal to ours, since Kodan aims to train the
optimal neural network model for specific user applications,
while we focus on how to optimally schedule compute on
satellites and ground stations given a fixed neural network.
Hence Kodan can be used alongside Serval.

8 Concluding Discussion

We build Serval, a distributed computation framework for
near-realtime insights from Earth imagery satellites. Serval
can deliver latency sensitive imagery such as forest fire im-
agery in minutes as opposed to hours or days of delay for
traditional in-order delivery systems. We conclude by listing
some possible extensions of Serval in future work:
• Multi-modal imagery: Serval currently focuses on

RGB imagery captured by satellites. Increasingly, satel-
lites capture other forms of imagery such as radar, hyper-
spectral, and multi-spectral. We believe Serval can natu-
rally extend to support these emerging image types.

• Merging filters across queries: As the number of applica-
tions scales, there are more opportunities to reduce redun-
dant compute within and across queries. Multiple queries
may share filters to reduce compute on satellites. More-
over, multiple neural network models may share weights
for a subset of the layers and present opportunities for
model merging techniques like [48] to optimize compute
on the satellite.

• Architectural optimizations: We did not consider archi-
tectural optimizations such as model pruning or precision
drop to pack more compute on the limited satellite re-
sources. Such techniques can further improve Serval’s
performance.

Acknowledgments

We are grateful to anonymous reviewers and our shepherd
Lixia Zhang for feedback on this work. This work was par-
tially sponsored by NSF Award CNS-2237474, by NSF Award
CNS-1908888, and by generous contributions from Cisco and
Microsoft. We are grateful to Kiruthika Devaraj from Planet
Inc. for discussions and feedback on early ideas. Access to
Planetscope imagery was provided by the UIUC library’s
contract with Planet Inc.

References

[1] Analytics Overview. https://developers.planet.
com/docs/analytics/.

[2] Open-meteo: Open-source weather api. https://open-
meteo.com/.

[3] Spire Global Inc. https://spire.com/.

[4] Living on the edge: Satellites adopt powerful computers.
https://spacenews.com/living-on-the-edge-
satellites-adopt-powerful-computers/, 2022.

[5] One more way ai can help us harness one of
the most underutilized datasets in the world.
https://www.planet.com/pulse/one-more-
way-ai-can-help-us-harness-one-of-the-
most-underutilized-datasets-in-the-world,
2023.

[6] Neil Agarwal and Ravi Netravali. Boggart: Towards
General-Purpose acceleration of retrospective video an-
alytics. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
933–951, Boston, MA, April 2023. USENIX Associa-
tion.

[7] Amazon Inc. AWS Ground Station . https://aws.
amazon.com/ground-station/.

[8] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox,
Alex Crown, Shadi Nogbahi, and Yuanchao Shu. Video
analytics-killer app for edge computing. In Proceed-
ings of the 17th annual international conference on mo-
bile systems, applications, and services, pages 695–696,
2019.

[9] Bruno Aragon, Rasmus Houborg, Kevin Tu, Joshua B.
Fisher, and Matthew McCabe. CubeSats Enable High
Spatiotemporal Retrievals of Crop-Water Use for Preci-
sion Agriculture. Remote Sensing, 2018.

[10] William Bamford, Luke Winternitz, and Curtis Hay. Gps
world, innovation: Autonomous navigation at high earth
orbits. 2005.

[11] Panagiotis Barmpoutis, Periklis Papaioannou, Kosmas
Dimitropoulos, and Nikos Grammalidis. A review on
early forest fire detection systems using optical remote
sensing. IEEE Sensors, 2020.

[12] Johan Barthélemy, Nicolas Verstaevel, Hugh Forehead,
and Pascal Perez. Edge-computing video analytics for
real-time traffic monitoring in a smart city. Sensors,
19(9):2048, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 821

https://developers.planet.com/docs/analytics/
https://developers.planet.com/docs/analytics/
https://open-meteo.com/
https://open-meteo.com/
https://spire.com/
https://spacenews.com/living-on-the-edge-satellites-adopt-powerful-computers/
https://spacenews.com/living-on-the-edge-satellites-adopt-powerful-computers/
https://www.planet.com/pulse/one-more-way-ai-can-help-us-harness-one-of-the-most-underutilized-datasets-in-the-world
https://www.planet.com/pulse/one-more-way-ai-can-help-us-harness-one-of-the-most-underutilized-datasets-in-the-world
https://www.planet.com/pulse/one-more-way-ai-can-help-us-harness-one-of-the-most-underutilized-datasets-in-the-world
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/

[13] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
Ekya: Continuous learning of video analytics models on
edge compute servers. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 119–135, Renton, WA, April 2022. USENIX
Association.

[14] A. Bhattachan, N. Skaff, S. Vimal, J. Remais, and D. P.
Lettenmaier. Using geospatial datasets to characterize
mosquito larval habitats in the Los Angeles Basin. In
AGU Fall Meeting Abstracts, 2019.

[15] Debopam Bhattacherjee, Simon Kassing, Melissa Lic-
ciardello, and Ankit Singla. In-orbit computing: An
outlandish thought experiment? In Proceedings of the
19th ACM Workshop on Hot Topics in Networks, Hot-
Nets ’20, 2020.

[16] Vaibhav Bhosale, Ketan Bhardwaj, and Ada Gavrilovska.
Toward loosely coupled orchestration for the LEO satel-
lite edge. In 3rd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 20). USENIX Association,
June 2020.

[17] Christopher Canel, Thomas Kim, Giulio Zhou, Cong-
long Li, Hyeontaek Lim, David G Andersen, Michael
Kaminsky, and Subramanya Dulloor. Scaling video
analytics on constrained edge nodes. Proceedings of
Machine Learning and Systems, 1:406–417, 2019.

[18] Kejie Chen, Jean-Philippe Avouac, Saif Aati, Chris
Milliner, Fu Zheng, and Chuang Shi. Cascading and
pulse-like ruptures during the 2019 ridgecrest earth-
quakes in the eastern california shear zone. Nature
Communications, 2020.

[19] M. Chu, D. Drynan, and L. R. Benning. Integrating
satellite links into a land-based packet network. ACM
SIGCOMM Comput. Commun. Rev., 1985.

[20] Kyle Colton, Joseph Breu, Bryan Klofas, Sydney Marler,
Chad Norgan, and Matthew Waldram. Merging Diverse
Architectures for Multi-Mission Support. In Small Satel-
lite Conference, 2020.

[21] Olivier L. de Weck, Richard de Neufville, and Mathieu
Chaize. Staged deployment of communications satellite
constellations in low earth orbit. Journal of Aerospace
Computing, Information, and Communication, 2004.

[22] Bradley Denby, Krishna Chintalapudi, Ranveer Chandra,
Brandon Lucia, and Shadi Noghabi. Kodan: Addressing
the computational bottleneck in space. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating

Systems, Volume 3, ASPLOS 2023, New York, NY, USA,
2023. Association for Computing Machinery.

[23] Bradley Denby and Brandon Lucia. Orbital edge com-
puting: Nanosatellite constellations as a new class of
computer system. In ACM ASPLOS, 2020.

[24] Kiruthika Devaraj, Ryan Kingsbury, Matt Ligon, Joseph
Breu, Vivek Vittaldev, Bryan Klofas, Patrick Yeon, and
Kyle Colton. Dove High Speed Downlink System. In
Small Satellite Conference, 2017.

[25] Kiruthika Devaraj, Matt Ligon, Eric Blossom, Joseph
Breu, Bryan Klofas, Kyle Colton, and Ryan Kingsbury.
Planet High Speed Radio: Crossing Gbps from a 3U
Cubesat. In Small Satellite Conference, 2019.

[26] Anna Escher. Inside Planet Labs’ new satel-
lite manufacturing site. TechCrunch. https:
//techcrunch.com/2018/09/14/inside-planet-
labs-new-satellite-manufacturing-site/,
2018.

[27] C.E. Fossa, R.A. Raines, G.H. Gunsch, and M.A. Tem-
ple. An overview of the iridium (r) low earth orbit
(leo) satellite system. In IEEE National Aerospace and
Electronics Conference, 1998.

[28] Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni,
Matej Batič, Léonie Buckley, Aubrey Dunne, Chris van
Dijk, Marco Esposito, John Hefele, Nathan Vercruyssen,
Gianluca Furano, Massimiliano Pastena, and Josef As-
chbacher. The -sat-1 mission: The first on-board deep
neural network demonstrator for satellite earth obser-
vation. IEEE Transactions on Geoscience and Remote
Sensing, 2022.

[29] Peizhen Guo, Bo Hu, and Wenjun Hu. Mistify: Au-
tomating DNN model porting for On-Device inference
at the edge. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
705–719. USENIX Association, April 2021.

[30] JOHN HANSON, MARIA EVANS, and RONALD
TURNER. Designing good partial coverage satellite
constellations. Astrodynamics Conference. 1990.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[32] Felix R. Hoots and Ronald L. Roehrich. Models for
Propagation of NORAD Element Sets. Technical report,
Aerospace Defense Command, United States Airforce,
1980.

822 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/

[33] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations, 2017.

[34] Y.C. Hubbel. A comparison of the iridium and amps
systems. IEEE Network, 1997.

[35] Gary J. Jedlovec, Stephanie L. Haines, and Frank J. La-
Fontaine. Spatial and temporal varying thresholds for
cloud detection in goes imagery. IEEE Transactions on
Geoscience and Remote Sensing, 2008.

[36] Rachel Jewett. Planet to support nasa re-
lay networks for telesat, ses. Satellite Today.
https://www.satellitetoday.com/government-
military/2022/08/23/planet-to-support-nasa-
relay-networks-for-telesat-ses/.

[37] Glenn Jocher, Alex Stoken, Jirka Borovec, Ayush
Chaurasia, Liu Changyu, Adam Hogan, Jan Hajek, Lau-
rentiu Diaconu, Yonghye Kwon, Yann Defretin, et al.
ultralytics/yolov5: v5. 0-yolov5-p6 1280 models, aws,
supervise. ly and youtube integrations. Zenodo, 2021.

[38] H. Keller, H. Salzwedel, G. Schorcht, and V. Zerbe.
Comparison of the probability of visibility of the most
important currently projected mobile satellite systems.
In IEEE Vehicular Technology Conference. Technology
in Motion, 1997.

[39] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin
Hsieh, Junchen Jiang, Ravi Netravali, Yuanchao Shu,
Mohammad Alizadeh, and Victor Bahl. RECL: Respon-
sive Resource-Efficient continuous learning for video
analytics. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
917–932, Boston, MA, April 2023. USENIX Associa-
tion.

[40] J. Kong, Y. Ryu, R. Houborg, and M. Kang. Monitoring
canopy photosynthesis in high spatial and temporal res-
olution using CubeSat imagery. In AGU Fall Meeting
Abstracts, 2019.

[41] Kuiper Systems LLC. Application of kuiper sys-
tems llc for authority to launch and operate a non-
geostationary satellite orbit system in ka-band frequen-
cies. FCC, https://licensing.fcc.gov/myibfs/
download.do?attachment_key=1773885.

[42] R.J. Leopold. The iridium communications systems. In
Singapore ICCS/ISITA ‘92, 1992.

[43] Israel Leyva-Mayorga, Marc M. Gost, Marco Moretti,
Ana Pérez-Neira, Miguel Ángel Vázquez, Petar
Popovski, and Beatriz Soret. Satellite edge computing

for real-time and very-high resolution earth observation.
arXiv 2212.12912, 2022.

[44] Martina Lofqvist and José Cano. Optimizing data pro-
cessing in space for object detection in satellite imagery.
CoRR, abs/2107.03774, 2021.

[45] Martina Lofqvist and José Cano. Accelerating deep
learning applications in space. arXiv 2007.11089, 2020.

[46] Microsoft. Azure Orbital. https://azure.
microsoft.com/en-us/services/orbital/.

[47] Sorour Mohajerani and Parvaneh Saeedi. Cloud-net:
An end-to-end cloud detection algorithm for landsat 8
imagery. In IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, 2019.

[48] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh
Ananthanarayanan, Yuanchao Shu, Nikolaos Karianakis,
Guoqing Harry Xu, and Ravi Netravali. Gemel: Model
merging for Memory-Efficient, Real-Time video analyt-
ics at the edge. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23),
pages 973–994, Boston, MA, April 2023. USENIX As-
sociation.

[49] C. Partridge and T.J. Shepard. Tcp/ip performance over
satellite links. IEEE Network, 1997.

[50] Planet Inc. Dove Satellite Constellation. https://www.
planet.com/our-constellations/.

[51] Planet Inc. Planetscope. https://developers.
planet.com/docs/data/planetscope/.

[52] Stephen R. Pratt, Richard A. Raines, Carl E. Fossa, and
Michael A. Temple. An operational and performance
overview of the iridium low earth orbit satellite system.
IEEE Communications Surveys, 1999.

[53] William B Rossow and Leonid C Garder. Cloud detec-
tion using satellite measurements of infrared and visible
radiances for isccp. Journal of climate, 1993.

[54] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Cac-
eres, and Nigel Davies. The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[55] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

[56] Yushan Siriwardhana, Pawani Porambage, Madhusanka
Liyanage, and Mika Ylianttila. A survey on mobile
augmented reality with 5g mobile edge computing: ar-
chitectures, applications, and technical aspects. IEEE
Communications Surveys & Tutorials, 23(2):1160–1192,
2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 823

https://www.satellitetoday.com/government-military/2022/08/23/planet-to-support-nasa-relay-networks-for-telesat-ses/
https://www.satellitetoday.com/government-military/2022/08/23/planet-to-support-nasa-relay-networks-for-telesat-ses/
https://www.satellitetoday.com/government-military/2022/08/23/planet-to-support-nasa-relay-networks-for-telesat-ses/
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://azure.microsoft.com/en-us/services/orbital/
https://azure.microsoft.com/en-us/services/orbital/
https://www.planet.com/our-constellations/
https://www.planet.com/our-constellations/
https://developers.planet.com/docs/data/planetscope/
https://developers.planet.com/docs/data/planetscope/

[57] SpaceX. Spacex non-geostationary satellite sys-
tem. FCC, https://fcc.report/IBFS/SAT-LOA-
20161115-00118/1158350.pdf.

[58] Peng Tang, Xinggang Wang, Angtian Wang, Yongluan
Yan, Wenyu Liu, Junzhou Huang, and Alan Yuille.
Weakly supervised region proposal network and object
detection. In Proceedings of the European conference
on computer vision (ECCV), pages 352–368, 2018.

[59] Bill Tao, Maleeha Masood, Indranil Gupta, and Deepak
Vasisht. Transmitting, fast and slow: Scheduling satel-
lite traffic through space and time. In Proceedings of the
29th Annual International Conference on Mobile Com-
puting and Networking, ACM MobiCom ’23, New York,
NY, USA, 2023. Association for Computing Machinery.

[60] Deepak Vasisht and Ranveer Chandra. A distributed
and hybrid ground station network for low earth orbit
satellites. In ACM HotNets, 2020.

[61] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra.
L2d2: Low latency distributed downlink for low earth
orbit satellites. In ACM SIGCOMM, 2021.

[62] Maria Fernandez Vidal and Peter Bull. Using satellite
data in financial inclusion. 2019.

[63] Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin,
Junchen Jiang, and Kai Chen. Enabling edge-cloud
video analytics for robotics applications. IEEE Transac-
tions on Cloud Computing, pages 1–1, 2022.

[64] M. Wiseman and A. Bradley. Impact of the length of the
sea ice-free summer season on Alaskan Arctic coastal
erosion rates. In AGU Fall Meeting Abstracts, 2019.

[65] Zhujun Xiao, Zhengxu Xia, Haitao Zheng, Ben Y. Zhao,
and Junchen Jiang. Towards performance clarity of
edge video analytics. In 2021 IEEE/ACM Symposium
on Edge Computing (SEC), pages 148–164, 2021.

824 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf
https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf

	Introduction
	Background
	Serval's Design
	Problem Setup
	Distributing Compute Across Earth and Space
	Incorporating Auxiliary Information Sources
	Serval's Execution Engine
	The Satellites
	The Ground Stations
	The Cloud

	Experimental Setup
	Applications
	Real-world Dataset
	Hardware-benchmarking and Simulator Design

	Microbenchmarks
	Number of Final Images Number of Collected Images
	Preemptive Compute at Ground Station
	Hardware Emulation

	End-to-End Results
	End-to-end Performance
	Satellite Power Usage

	Related Work
	Concluding Discussion

